首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binuclear complexes of Sm(III), Eu(III), Gd(III), Tb(III), and Dy(III) nitrates with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecane-2,8-dione (C11H20N4O2, SC)—[Sm(NO3)3(SC)(H2O)]2(I), [Eu(NO3)3(SC)(H2O)]2 (II), [Gd(NO3)2(SC)(H2O)3)]2(NO3)2 (III), [Tb(NO3)3(SC)(H2O)]2 (IV), [Dy(NO3)3(SC)(H2O)]2 (V), are synthesized, and their X-ray diffraction analyses are carried out. The crystals of complexes I–V are monoclinic: space group P21/n for III and P21/c for I, II, IV, and V. In centrosymmetric coordination complexes II, III, IV, and V, the Ln atoms are coordinated by two O(1) and O(2) atoms of two molecules of the SC ligands bound by a symmetry procedure (1 ? x, ?y, 1 ? z), three bidentate nitrate anions, and a water molecule. The coordination numbers of the metal atoms are equal to 9, and the coordination polyhedra are considerably distorted three-capped trigonal prisms, whose bases include the O(1), O(2), O(12) and O(3), O(7), O(9) atoms. The dihedral angle between the bases of the prism is 18°, and that between the mean planes of the side faces is 55°–71° for I, 17° and 55°–71° for II, 16° and 55°–70° for IV, and 16° and 55°–70° for V. The Sm...Sm distance in complex I is 9.44 Å, Eu...Eu in II is 9.42 Å, Tb...Tb in IV is 9.36Å, and Dy...Dy in V is 9.36Å. The gadolinium atom in complex III is coordinated by two oxygen atoms of two ligand molecules bound by a symmetry procedure (?x, ?y + 1, ?z + 1), two bidentate nitrate anions, and three water molecules. One of the nitro groups in compound III is localized in the external coordination sphere of the metal. The coordination number of gadolinium is 9, and the coordination polyhedron is a significantly distorted three-capped trigonal prism, whose base includes the O(1), O(2), O(7) and O(4), O(5), O(9) atoms. The dihedral angle between the bases of the prism is 22.8°, and that between the mean planes of the side faces is 53°–72°. The Gd...Gd distance in complex III is 9.17 Å.  相似文献   

2.
This paper reports the reactions of a monomeric aluminum dihydride LAlH2 (L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3) with diazo, azido, and terminal alkyne compounds. The reaction of LAlH2 with N2CH(SiMe3) and N3(1-Ad) occurred through an Al-H addition to end-on nitrogen to yield respective compounds LAl[N(H)N = CH(SiMe3)]2 (1) and LAl[N(H)N=N(1-Ad)]2 (2), while the reaction of LAlH2 with PhC≡CH occurred through a stepwise deprotonation to yield LAlH(C≡CPh) (5) and LAl-(C≡CPh)2 (6), respectively. 2 further reacted by N2-release to yield LAl[NH(1-Ad)][N(H)N=N(1-Ad)] (3) and LAl[NH-(1-Ad)]2 (4) upon the increased temperature treatment. Compounds 16 have been fully characterized, revealing novel reactivity patterns of LAlH2 toward different substrates under the steric influence from the bulky L ligand at Al.  相似文献   

3.
The radical-molecule reaction of C2Cl3 with NO2 is explored at the B3LYP/6-311G(d,p) and CCSD(T)/6-311+G(d,p) (single-point) levels. On the singlet potential energy surface (PES), the association between C2Cl3 and NO2 is found to be carbon-to-nitrogen attack forming the adduct C2Cl3NO2 (1) without any encounter barrier, followed by isomerization to C2Cl3ONO (2). Starting from 2, the most feasible pathway is the N–O1 bond cleavage which lead to P 1 (C2Cl3O + NO). Much less competitively, 2 transforms to the three-membered ring isomer c-OCCl2C–ClNO (4 a ) which can easily interconvert to c-OCCl2C–ClNO 4 b . Then 4 (4 a , 4 b ) takes direct C1–C2 and C2–O1 bonds cleavage to give P 2 (COCl2 + ClCNO). The lesser competitive channel is the 4 a isomerizes to the four-membered ring intermediate O-c-CNClOCCl2 (5) followed by dissociation to P3 (CO + ClNOCCl2). The concerted 1,2-Cl shift along with C1–O1 bond rupture of 4 b to form ONC(O)CCl3 (6) followed by dissociation to P 4 (ClNO + OCCCl2) is even much less feasible. Moreover, some of P 3 and P 4 can further dissociate to P 5 (ClNO + CO + CCl2). Compared with the singlet pathways, the triplet pathways may have less contribution to the title reaction. Our results are in marked difference from previous theoretical studies which showed that two initial adducts C2Cl3–NO2 and C2Cl3–ONO are obtained. Moreover, in the present paper we focus our main attentions on the cyclic isomers in view of only the chain-like isomers are considered by previous studies. The present study may be helpful for understanding the halogenated vinyl chemistry.  相似文献   

4.
The molecular geometry and electronic structure of stable organic derivatives of divalent germanium and tin, [(Me3Si)2N-M-OCH2CH2NMe2]n (M = Ge (4), n = 1; M = Sn (5), n =2) and their isomers with broken (4a, 5a) and closed (4b, 5b) intramolecular coordination bonds M←NMe2, were studied by the density functional (PBE/TZ2P/SBK-JC) and NBO methods. Factors responsible for stability of their dimers 4c and 5c were established. Dimerization of 5b in the gas phase is a thermodynamically favorable process (ΔG 0 = ?2.1 kcal mol?1) while that of 4b is thermally forbidden (ΔG 0 = 10.1 kcal mol?1), which is consistent with experimental data. The M←NMe2 coordination bond energies, ΔE 0, were found to be ?5.3 and ?8.6 kcal mol?1 for M = Ge and Sn, respectively. NBO analysis showed that the metal atoms M in molecules 4 and 5 are weakly hybridized. The lone electron pairs of the M atoms have strong s-character while vacant orbitals of these atoms, LP* M, are represented exclusively by the metal npz-AOs. The strongest orbital interactions between subunits in dimers 4c and 5c involve electron density donation from the lone electron pairs of oxygen atoms (LP O) to the LP* M orbitals.  相似文献   

5.
The reaction of triphenylantimony with propiolic acid in the presence of hydrogen peroxide (molar ratios 1 : 2 : 1 and 1 : 1 : 1) in diethyl ether affords triphenylantimony dipropiolate Ph3Sb[OC(O)C≡CH]2 (I) and μ2-oxobis[(propiolato)triphenylantimony] [Ph3SbOC(O)C≡CH]2O (II). Tetraphenylantimony propiolate Ph4SbOC(O)C≡CH (III) is synthesized from pentaphenylantimony and propiolic or acetylenedicarboxylic acid in toluene. According to the X-ray diffraction data, the crystals of compounds I and III include two types of crystallographically independent molecules (a and b). The antimony atoms in molecules Ia, Ib, II, IIIa, and IIIb have the trigonal-bipyramidal coordination mode with different degrees of distortion. The OSbO and OSbC axial angles are 176.8(2)° (Ia, Ib), 170.17(15)°, 178.78(14)° (II), and 173.2(5)°, 174.4(5)° (IIIa, IIIb). The CSbC equatorial angles lie in the ranges 108.2(3)°–143.1(3)° (I), 109.0(2)°–131.0(2)° (II), and 113.1(4)°–125.4(4)° (III). The SbOSb angle in II is 141.55(19)°. The Sb-C bond lengths are 2.103(8)–2.141(5) (I), 2.105(5)–2.119(5) (II), and 2.076(12)–2.166(13) Å (III). The Sb-O distances increase in a series of I, II, and III: 2.139(6)–2.156(7) (Ia, Ib); 2.206(4), 2.218(3) (II); and 2.338(10), 2.340(10) Å (III).  相似文献   

6.
New heteroligand Cu(II) and Zn(II) complexes with the α-naphthylacetic acid anion (NAA) and monoethanolamine (MEA), [M(NAA)2(MEA)2] (M = Cu2+, (I), Zn2+ (II)), are synthesized. The crystal structures of the obtained complexes are determined by X-ray diffraction analysis (CIF files CCDC 984097 (I) and 930946 (II)). The crystals are monoclinic, for I: a = 18.8140(9) Å, b = 4.82500(14) Å, c = 16.0360(7) Å, β = 115.135(6)°, V = 1317.87(11) Å3, space group P21/c, Z = 2; for II: a = 32.9760(14) Å, b = 5.0911(3) Å, c = 15.7994(10) Å, β = 94.418(5)°, V = 2644.6(3) Å3, space group C2/c, Z = 4. In the structure of complex I, the Cu2+ ion arranged in the symmetry center is coordinated at the vertices of the distorted octahedron by the oxygen atoms of two NAA molecules (Cu-O(2) 2.019(4) Å) and two MEA molecules. The latter is the bidentate-chelating ligand and coordinates the metal through the O and N atoms to form the five-membered metallocycle (Cu-O(3) 2.457(5), Cu-N(1) 1.986(5) Å). In complex II, the Zn atom (on axis 2) is coordinated at the vertices of the distorted tetrahedron by the oxygen atoms of two NAA molecules (Zn-O(2) 1.976(4) Å) and the nitrogen atoms of two MEA molecules (Zn-N 2.034(6) Å). The character of the interaction of coordinated NAA and MEA ligands and methods for packing complexes I and II are considered on the basis of the structural data.  相似文献   

7.
The reaction of dichlorostannanes R2SnCl2 (R=Me 1, Bun 2) with piperazine ligand in molar ratio 1:2, in dry methylene dichloride, in an inert atmosphere leads to the synthesis of R2Sn(C4H9N2)2(R=Me 1, Bun 2). In a similar manner, The reaction between Ph2SnCl2 and piperazine in dry ethanol in molar ratio 1:1 produces [Ph2Sn(C4H8N2)]2 (3). The yields of these new products were excellent and they have been fully characterized by FT-IR, UV–Vis, multinuclear (1H, 13C, 119Sn) NMR spectroscopy and mass spectrometry, as well as elemental analysis. The spectroscopic results indicate that the piperazine ligand is coordinated to tin atom of organotin moieties, through the nitrogen atoms. Furthermore, the ligand behaves as a bidentate fashion in (1) and (2) and gives 1:2 substitution products, while in the complex (3) the two six-membered rings bind in bidentate-chelate forms between the two Sn atoms.  相似文献   

8.
Two novel binuclear metal-organic coordination complexes [M2(Zaltoprofen)2(Bipy)2] [M = Cd (I), Zn (II); Zaltoprofen = 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid, Bipy = 2,2′-bipyridine) have been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction, elemental analysis, IR and electronic spectroscopy, powder X-ray diffraction, and fluorescent properties. Complexes I, II crystallize isomorphously in the monoclinic space group P21/c. Structural analysis shows that the M(II) atom of I and II is coordinated with four oxygen atoms from the carboxyl group of the Zaltoprofen together with two nitrogen atoms from the Bipy. The 3D structures of the complexes are stabilized by π-π stacking interactions.  相似文献   

9.
Two novel homobinuclear ytterbium(III) complexes, [Yb2(2AMB)6(H2O)4] · 2C2H6O (I) and Yb2(3AMB)6(H2O)4] · 3H2O (II) (2AMB = 2-aminobenzoic acid, 3AMB = 3-aminobenzoic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and X-ray crystallography (CIF files CCDC nos. 950103 (I), 921652 (II)). Complex I crystallizes in triclinic space group \(P\bar 1\) and complex II crystallizes in monoclinic space group P21/n. X-ray analysis shows that both complexes (I, II) have the dinuclear structure. The central Yb3+ ions in both complexes are eight-coordinated adopting distorted YbO8 dodecahedral geometry. Each Yb3+ ion is coordinated to two O atoms from bridging carboxylate, four O atoms from the chelating carboxylate ligands and two O atoms of water molecules. The crystal structure of I and II are stabilized by N-H…O, O-H…O, O-H…N, and C-H…O hydrogen bonds, C-H…π interactions and weak π-π stacking interactions.  相似文献   

10.
More than 20 М6Al38 isomers and several М12Al32 isomers for nitrogen- and phosphorus-substituted clusters with six and twelve dopant atoms M = N and P substituted for Al atoms in different positions at the surface of the aluminum cage and inside it have been studied by the density functional theory method. In the preferred N6Al38 isomer, all N atoms are substituted for Al atoms initially located in one outer layer of the cluster. In the course of geometry optimization, the nitrogen atoms are incorporated into positions in the neighboring intermediate layer, thus converting it into a 12-atom face consisting of three vertex-sharing adjacent six-membered rings with short N–Al bonds. For Р6Al38, a distribution of the dopant either in both surface layers or in the intermediate space between the surface layers and the inner core of the cluster is preferred. Optimization of alternative structures of the N12Al32 cluster with N atoms substituted for Al atoms in both outer layers is evidence in favor of the isomer in which the dopants are dispersed as separated monatomic anions N–. Together with their bridging Al atoms, these anions form the inner [N12Al14] cage with an unusual dumbbell-like structure in which the upper and lower halves are linked through N–Al bonds with the equatorial aluminum atoms. In the next low-lying isomer being ~23 kcal/mol higher on the energy scale, there is observed the “microclustering” of the dopant to form three covalently bonded diatomic dianions N22-; the latter, together with the bridging Al atoms are combined into a [N6Al6] “subcluster” inside the severely distorted outer cage. In P12Al32, the aluminum cage is subjected only to moderate distortions: the phosphorus atoms remain in the outer layers and form two three-membered rings [Р3]. The estimated energies of the model substitution reactions Al44 + M6 → M6Al38 + Al6 (1) and Al44 + 2M6 → M12Al38 + 2Al6 (2) demonstrate that all these reactions are exothermic; however, for the nitrogen-containing clusters, the decrease in energy with increasing number of substitutions increases from 66 (1) to 113 (2) kcal/mol, while in the case of phosphorus, it decreases from 45 (1) to 4 (2) kcal/mol. The results obtained for N6Al38, N12Al32, Р6Al38, and Р12Al32 are compared with the previous calculations for the C6Al38, C12Al32, Si6Al38, and Si12Al32 clusters.  相似文献   

11.
Coordination compounds [Cd1.5I3(HMTA) · H2O] (I) and [CdI2(HMTA) · H2O] (II) are synthesized by the reaction of CdI2 with hexamethylenetetramine (HMTA, C6H12N4) with the 1: 1 ratio in ethanol, and their structures are determined. The crystals of compound I are triclinic, space group P $ \bar 1 $ , a = 8.027(1), b = 9.391(1), c = 10.382(1)?, ?? = 66.64(1)°, ?? = 86.18(1)°, ?? = 73.63(1)°, V = 749.2(1) ?3, ??calcd = 3.136 g/cm3, Z = 2. The crystals of compound II are triclinic, space group P $ \bar 1 $ , a =7.713(1), b = 8.192(1), c = 12.101(1)?, ?? = 80.32(1)°, ?? = 89.57(1)°, ?? = 7.30(1)°, V = 725.0(1) ?3, ??calcd = 2.402 g/cm3, Z = 2. Structure I includes two types of cadmium complexes. The Cd(1) atom is coordinated through the octahedral mode by three pairs of the I, N(HMTA), and O(H2O) atoms. The coordination polyhedron of the Cd(2) atom is a distorted tetrahedron (three I atoms and one N atom). The structure contains infinite strips consisting of tetranuclear cyclic fragments joined by the Cd(1) atoms due to the bridging iodine and nitrogen atoms. In structure II, the Cd atom is coordinated through the tetrahedral mode by two iodide ions and the N(HMTA) and O(H2O) atoms. The interaction between the complexes occurs due to hydrogen bonds O-H??N to form supramolecular chains along the direction [010]. In each HMTA molecule, one of four nitrogen atoms is a proton acceptor in the hydrogen bonds, one nitrogen atom is coordinated, and two N atoms are terminal. Compound II in the solid state has photoluminescence with maxima at 443, 470, and 518 nm.  相似文献   

12.
Structural characteristics, vibrational frequencies, and energies of isomers of compounds of CO and CO2 molecules with the centered aluminum cluster Al13 and its doped analogues Al12M (M = Ti and Ni) have been calculated by the density functional theory method. For the Al12MCO compounds, the most favor-able are two “fragment” isomers in which the C and O atoms are separated and built into the cluster cage, completing it to a 14-vertex polyhedron. In one of them, the C and O atoms are in the capping positions over adjacent trigonal MAl2 faces; in the second isomer, there is the five-coordinate C* atom located in the center of a tetragonal MAl3 face and bound to the central Al atom through the long fifth bond. The “coordinated” isomers, in which the CO molecule is coordinated as a ligand to a cluster vertex, edge, or face, are unstable to removal of CO for Al13CO, close in energy to the fragment isomers for Al12NiCO, and considerably higher on the energy scale than the fragment isomers but remain stable to CO removal for Al12TiCO. For the Al12MCO2 compounds, the most favorable is the fragment isomer in which both oxygen atoms are in the capping positions over adjacent faces and the C* atom is five-coordinate. The alternative oxo carbonyl isomer Al12MO(CO) is close to the lowest-lying one in the case of M = Ni and is ~56 kcal/mol higher on the energy scale in the case of M= Ti. The less stable Al12M(CO2) isomer is the complex in which the CO2 ligand is coordinated to an M-Al edge. According to calculations, addition of CO to Al12MO and addition of CO2 to Al12M to form, respectively, Al12MO(CO) and Al12M(CO2) can occur without noticeable barrier. The Al12M(CO2) and Al12MO(CO) isomers are separated by a barrier, moderate for M = Ti (~16 kcal/mol) and small for M = Ni (~6 kcal/mol).  相似文献   

13.
The synthesis and results of IR spectroscopy and X-ray diffraction analysis of new complexes of biurete NH2CONHCONH2 (BU) with the composition LnCl3 · 2BU · 4H2O, where Ln = La (I), Pr (II), Ho (III), Er (IV), and Lu (V), are presented. Crystals of complexes I–V include complex cations [Ln(H2O)4(BU)2]3+ and uncoordinated chloride ions. The coordination mode of biurete molecules is bidentate through the oxygen atoms, and upon coordination the BU molecules are transformed from the initial trans to cis configuration. Water molecules are also coordinated through the oxygen atom (the shape of the polyhedron of the Ln atoms is a two-capped trigonal prism). The oxygen atoms of both BU molecules and the oxygen atoms of the first and second water molecules form a trigonal prism, whereas the oxygen atoms of the third and fourth water molecules form two caps of the coordination polyhedron. The coordinated BU molecules are joined with the chloride ions and water molecules of the adjacent complex cations by hydrogen bonds. The degree of conversion of trans-BU to cis-BU in the lanthanide series of complexes of this type is discussed.  相似文献   

14.
The nine new heteroaryl-substituted imidazolidinium (1ac), pyrimidinium (2ac) and diazepinium (3ac) salts as N-heterocyclic carbene (NHC) precursors were synthesized in good yields and entirely characterized using elemental analyses and conventional spectroscopic methods. In situ formed complexes from heterocyclic salts (13), Pd(OAc)2 and in the presence of KOBu t as a base were tested as catalysts for the Mizoroki–Heck coupling reaction in an aqueous media and very high yields were achieved. 1,3-Di(5-methylthiophen-2-ylmethyl)pyrimidinium hexafluorophosphate salt (2b) was structurally characterized by single-crystal X-ray diffraction. In the 2b compound (C16H21N2S2)+[PF6]?, the terminal thiophene rings are twisted with a dihedral angle of 72.8(3)°. In the pyrimidine ring, the three successive C atoms between the N atoms are disordered over two positions [occupancy ratio 0.753(12):0.247(12)]. In the crystal, neighboring molecules are linked by C–H…F hydrogen bonds, running along the b axis.  相似文献   

15.
Eleven isomers with the PyC2H 5 composition, which include three conventional (1–3) and eight distonic radical cations (4–11), have been generated and in most cases successfully characterized in the gas phase via tandem-in-space multiple-stage pentaquadrupole MS2 and MS3 experiments. The three conventional radical cations, that is, the ionized ethylpyridines C2H5-C5H4N (1–3), were generated via direct 70-eV electron ionization of the neutrals, whereas sequences of chemical ionization and collision-induced dissociation (CID) or mass-selected ion-molecule reactions were used to generate the distonic ions H2C·?C5H4N+?CH3 (4–6), CH3?C5H4N+?CH 2 · (7–9), C5H5N+?CH2CH 2 · (10), and C5H5N+?CH·?CH3 (11). Unique features of the low-energy (15-eV) CID and ion-molecule reaction chemistry with the diradical oxygen molecule of the isomers were used for their structural characterization. All the ion-molecule reaction products of a mass-selected ion, each associated with its corresponding CID fragments, were collected in a single three-dimensional mass spectrum. Ab initio calculations at the ROMP2/6–31G(d, p)//6–31G(d, p)+ZPE level of theory were performed to estimate the energetics involved in interconversions within the PyC2H5 system, which provided theoretical support for facile 4?7 interconversion evidenced in both CID and ion-molecule reaction experiments. The ab initio spin densities for the a-distonic ions 4–9 and 11 were found to be largely on the methylene or methyne formal radical sites, which thus ruled out substantial odd-spin derealization throughout the neighboring pyridine ring. However, only 8 and 9 (and 10) react extensively with oxygen by radical coupling, hence high spin densities on the radical site of the distonic ions do not necessarily lead to radical coupling reaction with oxygen. The very typical “spatially separated” ab initio charge and spin densities of 4–11 were used to classify them as distonic ions, whereas 1–3 show, as expected, “localized” electronic structures characteristic of conventional radical ions.  相似文献   

16.
Reactions of [ZnAl2(OPri)8] [A] with acetoxime in different molar ratios in refluxing anhydrous benzene, yield complexes of the type [ZnAl2(OPri)8?n{(CH3)2CNO}n] {where, n = 1–4}. All the complexes are transparent viscous/foamy solids. They were characterized by elemental analyses, FT-IR and NMR (1H, 13C {1H}) spectral studies. 27Al NMR spectrum of [ZnAl2(OPri)4{(CH3)2CNO}4] [4] in CDCl3 suggests presence of four coordination around both the aluminum atoms. IR spectra suggest that the oximato ligands bind the aluminum atoms in a side on manner in all the complexes. The ESI-mass spectrum of the representative derivative [4] suggests its monomeric nature while the thermo-gravimetric curve shows its low thermal stability. Sol–gel transformations of the precursors (A), (1), and (4) yielded nano-sized ZnAl2O4 samples (a), (b) and (c) at ~500 °C, respectively. The XRD patterns of (a), (b) and (c) indicate formation of cubic phase nano-sized zinc aluminate in all the samples. Surface morphologies of these samples were investigated by SEM images. IR spectra as well as EDX analyses indicate formation of pure zinc aluminate in all the cases. TEM image of sample (c) shows spherical (~5–8 nm) morphology.  相似文献   

17.
An attempt is made to maximize the solar energy storage in norbornadiene (1)/quadricyclane (2) system, through exchanging of heteroatoms at C7 of 1 and 2; calculating the corresponding energies at MP2/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p) and B3LYP/6-311++G** levels of theory. Free energy gaps between 1 X and 2 X, δG(1x)-(2x), and solar energy storage is the most for 1 Se, 1 As and 1 Al from group VIII, VII and III of the Table, respectively.  相似文献   

18.
The influence of the introduced fluorine atoms to diketonato backbone exerted on the crystal packing was studied on cobalt(II) bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionato-κ 2 O,O′) compounds with pyridine (1), 2,2′-bipyridine (2) and 1,10-phenanthroline (4), and cobalt(II) bis(benzoylacetonato-κ 2 O,O′) compound with 2,2′-bipyridine (3). The solid-state structures of 14 were determined by single crystal X-ray analysis. The coordination of Co(II) is octahedral in all four compounds. The differences in crystal packing of 1 with regard to the known complexes with non-fluorinated analogue and 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dionate were observed. Unit cell parameters of 2·½C7H8 and 3·½C7H8 slightly differ, but they have similar crystal packing dominated by the ππ interactions. Strong ππ interactions and weak C–H···π(arene) and C–F···π(arene) interactions are present in 24, while no significant intermolecular interactions are present in 1.  相似文献   

19.
Density functional theory calculations have been performed for understanding factors responsible for the different stabilities of particular isomers of [ReOX(N–O)2], where N–O represents carboxylate ligand chelating to the oxorhenium core through N and O atoms. DFT/B3LYP calculations have been carried out for all possible potential isomers of [ReO(OMe)(2-qc)2] (1), [ReOCl(2-qc)2] (2), [ReO(OMe)(1-iqc)2] (3), and [ReOCl(1-iqc)2] (4). Interestingly, complex 1 shows a very rare example of trans [O=Re–OMe] conformation with two chelating N,O-donor ligands in the equatorial plane, whereas the others were found to be the most common structure of [ReOX(N–O)2] with cis-N,N arrangement and chloride or methoxy ligand cis to the Re=O moiety. A thorough study of the calculated structures clearly shows that molecular structure of complexes [ReOX(N–O)2] is predominantly governed by multiply bonded oxo ligand, but the isomeric preferences may be tuned by careful selection of N–O ligands.  相似文献   

20.
Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号