首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2,8,12,18-Tetrabutyl-3,7,13,17-tetramethyl-5,15-bis(2-thienyl)-21H,23H-porphin and its complexes with manganese(III) with additional acetate and chloride acido ligands were synthesized. Basing on the UV, IR, and NMR spectra and the kinetic properties of the proton transfer and the dissociation of free and coordinated porphyrin respectively it was established that in the change of porphyrin basicity at thienyl substitution the effect of the sulfur atom vacant d-orbitals involved in the conjugation was predominant. The stability of thienyl-substitued complexes of manganese(III) rises when the axial Cl? is replaced by acetate ion.  相似文献   

2.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF 2 + -capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

3.
24-Membered macrocyclic bicopper(Ⅱ) complexes wth bridging ligand imidzao-late,SCN-,N3-and H2O respectively were synthesized by condensation of diacetylpyridine with 3-oxapentane-1,5-diamine.As the model compounds of superoxide dismutase (SOD),the relationship between their SOD activities and properties of bridging ligands and redox potentials of copper(Ⅱ) were studied.  相似文献   

4.
Reaction of a macrocyclic copper(II) complex [Cu(L)](ClO4)2 · 3H2O (I) (L = 1,3,10,12,16,19-hexaazatetracyclotetracosane) with a hexapod carboxylate ligand H6TTHA (H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid) and a tripod carboxylate ligand H3TATB (H3TATB = 4,4′,4″-S-triazine-2,4,6-triyl-tribenzoic acid) yielded two mononuclear copper(II) complexes [Cu(L)][H4TTHA] · 4H2O (II) and [Cu(L)][HTATB] · 4H2O (III). The complexes I–III have been structurally characterized. The crystal structures of complexes II and III show the copper(II) ion has a distorted pentacoordinate square-pyramidal geometry with two secondary and two tertiary amines from the macrocyclic complex [Cu(L)]2+ and one oxygen atom from the carboxylate ligand group at the axial position. The UV-Vis spectra are utilized to discuss the hydrolysis of the complex II.  相似文献   

5.
Reactions of phthalimide with capric and stearic acids gave 1-[1-(1-oxo-1H-isoindol-3-yl)nonylidene]-2,3-dihydro-1H-isoindol-3-one and 1-[1-oxo-1H-isoindol-3-yl)heptadecylidene]-2,3-dihydro-1H-isoindol-3-one, respectively. The latter were heated with zinc(II) acetate to obtain zinc complexes of 5,15-dioctyl-and 5,15-dihexadecyltetrabenzoporphyrins. The same complexes were synthesized by reaction of 1-(1-oxo-1H-isoindol-3-ylmethylidene)-2,3-dihydro-1H-isoindol-3-one with capric or stearic acid in the presence of zinc(II) oxide. The corresponding free porphyrin ligands were obtained by treatment of the metal complexes with sulfuric acid.  相似文献   

6.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

7.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

8.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

9.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF2+-capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

10.
New square-planar bis(macrocyclic)dicopper(II) complexes containing phenylene bridges between 16-membered pentaaza macrocyclic subunits have been synthesized via in-situ one pot template condensation reaction (IOPTCR) of aromatic nitrogen-nitrogen linker (R = 1,4-phenylenediamine; benzidine; 4,4′-diaminodiphenylmethane; 4,4′-diaminodiphenylether; 4,4′-diaminodiphenylsulfone), formaldehyde, bis(1,3-diaminopropane)copper(II) perchlorate and 1,3-dibromopropane in a 1:4:2:2 molar ratio results in the formation of new series of binuclear copper(II) complexes; 1-phenyl- (1); 1,1′-phenyl- (2); 1,1′-diphenylmethan- (3); 1,1′-diphenylether- (4); 1,1′-diphenylsulfone- (5) bis(1,3,7,11,15-pentaazacyclohexadecane)copper(II)), {[Cu([16]aneN5)]2R}(ClO4)4″. The formation of the macrocyclic framework and the mode of bonding of the complexes have been confirmed by data obtained from elemental analyses, UV-visible, FT-IR, 1H-NMR, electronic spectral studies, conductivity and magnetic susceptibility measurements. These bis(macrocyclic) complexes catalyzed efficiently the selective oxidation of tetrahydrofuran into tetrahydrofuran-2-one and a small amount of tetrahydrofuran-2-ol and 4-hydroxybutyraldehyde using dil. H2O2 as the oxidant.  相似文献   

11.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

12.
《Polyhedron》1999,18(23):3013-3018
The reaction of 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane (L1) with bromoacetic acid produced the macrocycle (L2=2,13-bis(2-carboxymethyl)-3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) in which two carboxymethyl groups are appended. The complexes [NiL2]·4H2O (2) and [CuL2]·4H2O (3) have been prepared and characterized. The two pendant carboxymethyl groups of the macrocyclic ligand are trans to each other, and the absolute configuration is a trans-III in the solid state. The crystal structures of 2 and 3 revealed an axially elongated octahedral geometry with four nitrogen atoms of the macrocycle and two oxygen atoms of the pendant arms at the axial positions. The nickel(II) and copper(II) ions are located at an inversion center. Macrocycle L2 reacts more rapidly with metal (II) ions than does L1. Spectra and electrochemical behaviors of the complexes are also discussed.  相似文献   

13.
A new category of dinucleating macrocyclic Schiff base ligands with ring sizes from 34- to 52-membered have been synthesised employing metal template procedures involving the reaction of o-phenylenediamine with a series of α,ω-bis(3′-hydroxy-4′-formylphenyloxy)alkanes in the presence of calcium(II), barium(II) or manganese(II). The latter cations act as ‘transient’ templates for formation of the corresponding metal-free Schiff base macrocyclic ligands, H4Ln (where n signifies the number of carbons in each linking bis-alkoxy chain); the macrocycles corresponding to n = 4, 6 and 8 were isolated and characterised while, for n = 1, in which single methylene groups acts as the bridges between salicyl moieties, the cyclic product was used directly for preparation of its dinuclear complex, [Zn2L1], without prior isolation. Evidence for the templating role of barium in the preparation of H4L6 and H4L8 was obtained by isolation of the corresponding species of type H4Ln·2Ba(ClO4)2 (n = 6 or 8) as ‘intermediates’ before generation of the respective metal-free macrocycles. Reaction of zinc(II) acetate with the free macrocycles in methanol yielded complexes of type [Zn2Ln] in all cases. A related non-cyclic ligand, H2L0 and its corresponding mononuclear complex, [ZnL0]·H2O, were also synthesised and its spectral properties compared with those of the macrocyclic derivatives. The elemental analyses, 1H NMR, IR, UV–Vis and MS spectra of the respective zinc complexes in each case were in accord with the formation of the expected 2:2 condensation product. The results of DFT calculations to probe aspects of the electronic and structural natures of both H2L1 and H4L4 are briefly presented.  相似文献   

14.
《Polyhedron》2001,20(15-16):2003-2009
The syntheses of the hexadentate ligand 2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane (L2) and its complexes with Ni(II) and Cu(II) are described. Crystal structures of H2L2·2HClO4 (1), [Ni(L2)](ClO4)2 (2) and [Cu(L2)](ClO4)2 (3) are reported. The two pendant acetamide groups of the macrocyclic ligand 1 are trans to each other and the absolute configuration is a trans-IV in the solid state. The crystal structures of 2 and 3 revealed an axially elongated octahedral geometry with four nitrogen atoms of the macrocycle and two oxygen atoms of the pendant acetamide groups at the axial positions. The nickel(II) and copper(II) ions are located at an inversion center. The electronic spectra and electrochemical behaviors of the complexes are significantly affected by the presence of the pendant arms.  相似文献   

15.
We have synthesized complexes of copper(II) with octaethyl-, 5-phenyl octaethyl-, 5,15-diphenyl octaethyl-, and 5,10,15,20-tetraphenyl octaethylporphyrins. We have studied their dissociation kinetics in mixed solvents AcOH – H2SO4 at temperatures of 298 K to 343 K. We have determined the complete kinetic equations for dissociation of copper porphyrins for different compositions of the binary solvent AcOH – H2SO4. We provide a rational basis for electronic and steric effects on the stability of copper(II) octaethylporphyrin upon meso-phenyl substitution as a function of the degree of substitution.  相似文献   

16.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

17.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

18.
Summary Copper(II) salts were reacted with two diamino-dithioether ligands, i.e. 1,3-di(o-aminophenylthio)propane (abbreviated H2L1) and 1,2-di(o-aminophenylthio)xylene (abbreviated H2L2). Mixtures of copper(I) and copper(II) complexes were obtained with Cl and ClO 4 counterions. The major products were the copper(I) complexes, which were obtained pure after recrystallisation from MeCN-MeOH. The ligands lose two protons from the amine functions to form copper(I) complexes of general formula [CuL]X, where X = ClO 4 or Cl. The complexes were oxidised to [CuL]X2 with H2O2 in DMF. Cu(NO3)2 on the other hand gave [CuH2LNO3]NO3.  相似文献   

19.
We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2−) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X−ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2− ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton− and metal−assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2− is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.  相似文献   

20.
1-Phenyl-2-[2-hydroxy-3-sulfo-5-nitrophenylazo]butadione-1,3 (H2L) was synthesized from benzoylacetone. The dissociation constants of the reagent were determined (pK 1 = 4.98 ± 0.03 and pK 2 = 8.53 ± 0.01). Stability constants of some metal complexes with this reagent were determined by potentiometric and conductometric titrations. The stability of these complexes decreased in the following order: Fe > Cu > UO2 > Ni > Co > Zn > Cd > Mn > Mg > Ca. The copper(II) H2L complex with a stoichiometry of 1: 2 was studied by photometry. ε = 1.4 × 104, Beer is law was obeyed in the copper concentration range from 0.25 to 3.07 μg/mL. The effect of foreign ions and masking agents on complexation was studied. A procedure for the photometric determination of copper(II) in seawater was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号