首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have reported a new method of preparing self-assembled monolayers (SAMs) of decanethiol and hexadecanethiol on gold surface by using a lyotropic liquid crystalline phase as an adsorbing medium. The stability and blocking ability of these SAMs were characterized using grazing angle Fourier transform infrared (FTIR) spectroscopy and electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. The lyotropic liquid crystalline medium possesses a hexagonal structure consisting of a nonionic surfactant Triton X-100, water, and the corresponding thiol, which provides a highly hydrophobic environment to solubilize the alkanethiols and later to facilitate their delivery to the gold surface. We find that the SAMs formed from the hexagonal liquid crystalline phase are highly compact and have excellent electrochemical blocking ability towards the redox probes compared to conventional SAMs prepared from commonly used organic solvents such as ethanol. From the impedance studies, we have determined the capacitance of the monolayer-coated electrodes and the surface coverage of the SAM, which has been found to be >99.98% on gold surface. We have also estimated the extent of ionic permeability through the film and measured the rate constants for the redox reactions on the SAM-modified electrodes. Our results show that the rate constants of [Fe(CN)6](3-/4-) and [Ru(NH3)6](2+/3+) redox couples are very much lower in the case of monolayers prepared in liquid crystalline phase compared to the SAM formed in 1 mM thiol in ethanol solution, suggesting a better blocking ability of the SAMs in the former case. From the grazing angle FTIR spectroscopic studies and capacitance measurements, we have ruled out any coadsorption of surfactant molecules on the Au surface. These results suggest that SAMs of very low defect density and extremely low ionic permeability can be obtained when a hexagonal lyotropic liquid crystalline phase is used as an adsorbing medium.  相似文献   

2.
The preparation and characterization of three new paramagnetic complexes of the 17-electron Re(II) ion are reported. The salts [Re(triphos)(CH(3)CN)(3))][X](2), X = [BF(4)](-) (1), [PF(6)](-) (2), and [Et(4)N][Re(triphos)(CN)(3)] (3) were prepared by homolytic cleavage of the Re-Re bond in [Re(2)(CH(3)CN)(10)][BF(4)](4) or by disruption of the chlorine bridges in [(triphos)Re(mu-Cl)(3)Re(triphos)]Cl (1) (triphos = 1,1,1-tris(diphenylphosphino-methyl)ethane) and characterized by single-crystal X-ray diffraction, infrared and (1)H NMR spectroscopies, cyclic voltammetry, and magnetic susceptibility measurements. Compound 2 undergoes reversible reduction and irreversible oxidation processes while 3 undergoes a reversible reduction, an irreversible oxidation, and a reversible oxidation. The magnetic susceptibility data for 2 and 3 exhibit a strong temperature independent paramagnetic component which is in accord with a highly anisotropic S = (1)/(2) magnetic ground state. The results of this study indicate that dinuclear Re(2)(II,II) starting materials are viable precursors for producing unusual mononuclear Re(II) complexes.  相似文献   

3.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

4.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

5.
The trigonal-bipyramidal high-spin (S = 2) oxoiron(IV) complex [Fe(IV)(O)(TMG(2)dien)(CH(3)CN)](2+) (7) was synthesized and spectroscopically characterized. Substitution of the CH(3)CN ligand by anions, demonstrated here for X = N(3)(-) and Cl(-), yielded additional S = 2 oxoiron(IV) complexes of general formulation [Fe(IV)(O)(TMG(2)dien)(X)](+) (7-X). The reduced steric bulk of 7 relative to the published S = 2 complex [Fe(IV)(O)(TMG(3)tren)](2+) (2) was reflected by enhanced rates of intermolecular substrate oxidation.  相似文献   

6.
The inclusion complexes of α-cyclodextrin(α-CD) and FcCO2(CH2)18 (FcSH) and their self-assembled monolayers(SAMs) on gold surface were investigated by electrospray tandem ionization mass spectrometry(ESI-MSn) and cyclic voltammetry, respectively. The interfacial electrochemical response of the SAMs is related to the way in which the inclusion complexes formed.  相似文献   

7.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

8.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

9.
In this paper, carbamate-based self-assembled monolayers (SAMs) of alkanethiolates on gold were suggested as a versatile platform for release of amine-bearing molecules in response to the electrical signal. The designed SAMs underwent the electrochemical oxidation on the gold surface with simultaneous release of the amine molecules. The synthesis of the thiol compounds was achieved by coupling isocyanate-containing compounds with hydroquinone. The electroactive thiol was mixed with 11-mercaptoundecanol [HS(CH(2))(11)OH] to form a mixed monolayer, and cyclic votammetry was used for the characterization of the release behaviors. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), indicating the irreversible conversion from carbamate to hydroquinone groups with simultaneous release of the amine molecules. The analysis of ToF-SIMS further indicated that the electrochemical reaction on the gold surface successfully released amine molecules.  相似文献   

10.
An ion-channel sensor was demonstrated by immobilizing ETH 1001, an ionophore for ion-selective electrodes, on a gold electrode surface. The approach for preparing the sensor was to incorporate the ionophore into a mixed self-assembled monolayer of 10-mercaptodecanesulfonate and 11-hydroxy-1-undecanethiol formed on the surface. The voltammetric responses for the thus prepared sensor to the primary cation Ca(2+) were observed by using [Fe(CN)(6)](3-/4-) as an electroactive marker. The ionophore was stably immobilized on the electrode surface with the hydrophobic interaction between its alkyl chains and those of the alkanethiol. The introduction of a proper charge density to the electrode surface improved the sensor sensitivity with retaining the selective response to Ca(2+) against Mg(2+) with concentrations above 10(-4) M.  相似文献   

11.
Novel dithiazepane-functionalized ferrocenyl-phenylethynyl oligomers 1 and 2 have been synthesized. Self-assembled monolayers (SAMs) of these ferrocene derivatives have been studied by X-ray photoelectron spectroscopy, ellipsometry, and cyclic voltammetry. It has been shown by XPS that monolayers of the dithiazepane-anchored molecules on gold electrodes contain gold-thiolate species. Cyclic voltammetry of the SAMs were characteristic of stable electroactive monolayers even for single-component SAMs of 1 and 2, with the more ideal responses recorded for the two-component SAMs diluted with undecanethiol. The small variation in peak splittings at progressively higher scan rates in these SAMs makes dithiazepane-bridged redox species promising candidates for further studies on molecular wires with bipodal anchoring.  相似文献   

12.
Tripodal [2]rotaxane, 3, and the structurally related axle, 2, incorporating a viologen moiety, a crown ether, and three thiol anchoring groups have been synthesized. Analogous monopodal derivatives, 1, have also been prepared. Self-assembled monolayers of the above tripodal and monopodal systems on gold have been studied by cyclic voltammetry. It has been shown that a thiol anchoring group is required to attach the monopodal viologen 1 to the surface of gold and that the maximum surface coverage of 1 corresponds to 2.7 x 10(-10) mol.cm(-2). The adsorbed monopodal viologen 1 does not thread bis-p-phenylene-34-crown-10 ether, 6. However, the tripodal axle 2 adsorbed on the surface of gold threads the crown ether 6 to form a hetero [2]rotaxane. In the case of the tripodal axle 2, the surface coverage is 7 x 10(-11) mol.cm(-2), while for the tripodal [2]rotaxane 3 the surface coverage reaches 1.1 x 10(-10) mol.cm(-2).  相似文献   

13.
A novel kind of ethylene-ferrocenyl dodecyl thiol bearing an electron-withdrawing pyridium group (FcCH=CH-Py(CH2)10SH) was synthesized and mixed with HOOCC(10)SH on an Au electrode to form mixed self-assembled monolayers (SAMs) in ethanol solution. The influence of the water content of acetonitrile on the electrochemistry of the SAMs was studied by cyclic voltammetry and ac voltammetry measurement. The results showed that the current decreased and the oxidation potential of the ferrocene group shifted negatively with increasing water content of acetonitrile.  相似文献   

14.
In-situ spectroscopic ellipsometry (SE) was utilized to examine the formation of the self-assembled monolayers (SAMs) of the water-soluble oligo(ethylene oxide) [OEO] disulfide [S(CH(2)CH(2)O)(6)CH(3)](2) {[S(EO)(6)](2)} and two analogous thiols - HS(CH(2)CH(2)O)(6)CH(3) {(EO)(6)} and HS(CH(2))(3)O(CH(2)CH(2)O)(5)CH(3) {C(3)(EO)(5)} - on Au from aqueous solutions. Kinetic data for all compounds follow simple Langmuirian models with the disulfide reaching a self-limiting final state (d=1.2nm) more rapidly than the full coverage final states of the thiol analogs (d=2.0nm). The in-situ ellipsometric thicknesses of all compounds were found to be nearly identical to earlier ex-situ ellipsometric measurements suggesting similar surface coverages and structural models in air and under water. Exposure to bovine serum albumin (BSA) shows the self-limiting (d=1.2nm) [S(EO)(6)](2) SAMs to be the most highly protein resistant surfaces relative to bare Au and completely-formed SAMs of the two analogous thiols and octadecanethiol (ODT). When challenged with up to near physiological levels of BSA (2.5mg/mL), protein adsorption on the final state [S(EO)(6)](2) SAM was only 3% of that which adsorbed to the bare Au and ODT SAMs.  相似文献   

15.
Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2'-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).  相似文献   

16.
Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH(3))(6)](3+/2+) and [Fe(CN)(6)](3-/4-) and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.  相似文献   

17.
A new route to low-valent technetium complexes containing multiple acetonitrile ligands has been developed. The reduction of TcCl(4)(PPh(3))(2) with zinc metal dust in acetonitrile results in the formation of [Tc(CH(3)CN)(4)(PPh(3))(2)][Zn(2)Cl(6)](1/2). The hexafluorophosphate salt of the analogous Tc(II) cation can be prepared via chemical oxidation of the Tc(I) species, and the Tc(I) cation can be regenerated via chemical reduction. The compounds have been characterized in the solid state via single-crystal X-ray crystallography, and in solution via a combination of spectroscopic techniques and cyclic voltammetry. The structural parameters found in the two complexes are similar to each other; however, the difference in oxidation state is reflected, as expected, in the spectroscopic results. The electrochemical data, obtained from cyclic voltammograms of Tc(CH(3)CN)(4)(PPh(3))(2)](PF(6))(n)() (n = 1,2), mirror the synthetic results in that both compounds possess a reversible redox couple at -0.55 V versus ferrocene, which has been assigned to the Tc(II)/Tc(I) couple.  相似文献   

18.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

19.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

20.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号