首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nanowire superlattice of InAs and GaAs layers with In0.47Ga0.53As as the impure layers is proposed. The oft-neglected k3 Dresselhaus spin-orbit coupling causes the spin polarization of the electron but often can produce a limited spin polarization. In this nanowire superlattice, Dresselhaus term produce complete spin filtering by optimizing the distance between the In0.47Ga0.53As layers and the Indium (In) in the impure layers. The proposed structure is an optimized nanowire superlattice that can efficiently filter any component of electron spins according to its energy. In fact, this nanowire superlattice is an energy dependent spin filter structure.  相似文献   

2.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

3.
L. Ren 《Physics letters. A》2008,372(23):4307-4310
In terms of Kubo's formula and Green's function method, for the two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (SOC), we study the spin polarization due to the effect from magnetic impurities with anisotropic spin dependent delta type coupling to electrons when an external dc electric field in plane is applied. The vertex correction of impurities in ladder approximation is carried out in the limit of EF?1/τ, Δ. We find that the strength of spin polarization can be significantly modified by vertex correction and the spin polarization is relevant to the anisotropy coefficient γ, but the direction of net spin polarization cannot be changed.  相似文献   

4.
《Solid State Communications》2007,144(12):521-523
The thermodynamic compressibility of a two-dimensional electron system in the presence of an in-plane magnetic field is calculated. We use accurate correlation energy results from quantum Monte Carlo simulations to construct the ground state energy and obtain the critical magnetic field Bc required to fully spin polarize the system. Inverse compressibility as a function of density shows a kink-like behavior in the presence of an applied magnetic field, which can be identified as Bc. Our calculations suggest an alternative approach to transport measurements of determining full spin polarization.  相似文献   

5.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

6.
We studied spin states of CdSe quantum dots (QDs) coupled with CdMnSe QDs by probing circular polarization of photoluminescence spectrum under external magnetic fields. The bandgap energies of CdSe and CdMnSe QDs are close to each other and photoluminescence mainly originates from CdSe QDs due to relatively low radiation efficiency of CdMnSe QDs. The photoluminescence lifetime as well as its intensity was decreased with increasing magnetic field, which was ascribed to the increase in the ground state wavefunctions in CdMnSe QDs. The decrease was more pronounced for spin down electrons, which was explained by the difference in spin up and down wave functions under magnetic fields. Our results show that the spin state of CdSe QDs can be manipulated by coupling with CdMnSe QDs.  相似文献   

7.
Interplay of Rashba- and Dresselhaus spin-orbit interactions and in-plane magnetic field is studied in a quasi-two-dimensional electron gas with finite thickness. The transverse confinement is modeled by means of a parabolic potential. An orbital effect of the in-plane magnetic field is shown to mix a transverse quantized spin-up state with nearest-neighboring spin-down states. A controllable changes of the spin-orbital interactions, orbital- and Zeeman effects of the in-plane magnetic field yield a multivalley energy subbands, where a negative differential resistance can be observed. The out-off-plane component of the equilibrium spin current appears to be not zero in the presence of an in-plane magnetic field, provided at least two transverse-quantized levels are filled. In the absence of the magnetic field the obtained results coincide with the well-known results, yielding cubic dependence of the equilibrium spin current on the spin-orbit coupling constants. The persistent spin-current vanishes in the absence of the magnetic field if Rashba- and Dresselhaus spin-orbit coefficients, α and β, are equal each other. In-plane magnetic field destroys this symmetry, and yields a finite spin-current as αβ. Magnetic field is shown to change strongly the equilibrium current of the in-plane spin components, and gives new contributions to the cubic-dependent on spin-orbit constants terms. These new terms depend linearly on the spin-orbit constants.  相似文献   

8.
In order to investigate the Ru sublattice magnetic structure, a study of the field dependence of the 99,101Ru nuclear magnetic resonance (NMR) has been carried out on the magnetic superconductor RuSr2GdCu2O8. It is found that the 99,101Ru NMR signal intensity increases significantly with applied magnetic field up to ≈3 kOe, beyond which, it progressively decreases. In addition, a shift of the NMR peaks to lower frequency is observed to begin at ≈1.3 kOe. These behaviors are shown to be accompanied by a field-induced Ru moment spin-flop in the ab planes, and are understood in terms of a previously proposed type-I antiferromagnetic ordering for the Ru sublattice. Based on this model, the inter-plane antiferromagnetic exchange coupling is determined to be ≈1.8 kOe along with a reversible in-plane spin-flop which is characterized by a field ≈0.6 kOe.  相似文献   

9.
Out-of-plane spin and charge responses to the terahertz field for a clean two-dimensional electron gas with a Rashba spin-orbit interaction in the presence of an in-plane magnetic field are studied. We show that the characteristic optical spectral behavior is remarkably different from that of the system in the absence of in-plane magnetic fields. It is found that the optical spin polarization normal to the plane is nonzero even for this clean system, in sharp contrast to the static case. Due to the combined effect of spin-orbit coupling and in-plane magnetic field, both diagonal and off-diagonal components of optical charge conductivity tensor are nonvanishing. It is indicated that one can control the spin polarization and the optical current by adjusting the optical frequency. In addition, the out-of-plane spin polarization and conductivities strongly rely on the direction of the external magnetic field. Nevertheless, they meet different angle-dependent relations. This dynamical out-of-plane spin polarization could be measured by the time-resolved Kerr rotation technique.  相似文献   

10.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

11.
We report inelastic light scattering measurements of spin excitations on coupled electron bilayers with relatively large tunneling gaps at total filling factor νT=1. We show that the pseudospin polarization order parameter, where the pseudospin labels the occupation of symmetric and antisymmetric levels, can be determined from the energy of long wavelength spin excitations. Our experiments indicate that the order parameter in the quantum Hall ground state collapses at the incompressible–compressible phase transition. The latter is driven by decreasing the tunneling gap through the application of an in-plane magnetic field.  相似文献   

12.
The electronic structure, spin splitting energies, and g factors of paramagnetic In1-xMnxAs nanowires under magnetic and electric fields are investigated theoretically including the sp-d exchange interaction between the carriers and the magnetic ion. We find that the effective g factor changes dramatically with the magnetic field. The spin splitting due to the sp-d exchange interaction counteracts the Zeeman spin splitting. The effective g factor can be tuned to zero by the external magnetic field. There is also spin splitting under an electric field due to the Rashba spin-orbit coupling which is a relativistic effect. The spin-degenerated bands split at nonzero kz (kz is the wave vector in the wire direction), and the spin-splitting bands cross at kz = 0, whose kz-positive part and negative part are symmetrical. A proper magnetic field makes the kz-positive part and negative part of the bands asymmetrical, and the bands cross at nonzero kz. In the absence of magnetic field, the electron Rashba coefficient increases almost linearly with the electric field, while the hole Rashba coefficient increases at first and then decreases as the electric field increases. The hole Rashba coefficient can be tuned to zero by the electric field.  相似文献   

13.
The angular dependences of the switching field and coercivity for magnetic multilayer films with strain caused by lattice mismatch are studied in detail with the help of the Stoner-Wohlfarth model. The expressions or equations for determining the switching field and the coercivity are obtained analytically, taking the strain effect into consideration. With these analytical expressions, the roles of the strain and the unidirectional anisotropy (exchange coupling) are displayed clearly. Compared to the standard Stoner-Wohlfarth model (without strain), the centers of the curves of the switching field and coercivity are found to shift from π/2 to π/2+θ due to the in-plane strain caused by the lattice mismatch between the film and substrate. For the ferromagnetic/antiferromagnetic exchange bias systems, the angularly dependent amplitude of the switching field or coercivity exhibits an obvious asymmetry. The staggering or separation of the peaks of the two branches of the coercivity results in a jump phenomenon in the curves for the exchange bias field and the coercivity near θ.  相似文献   

14.
We study the effect of dimerization of TMTSF molecules and the effect of magnetic field (Zeeman splitting) on the phase competition in quasi one-dimensional organic superconductors (TMTSF)2X by applying the random phase approximation method. As for the dimerization effect, we conclude that due to the decrease of the dimerization, which corresponds to applying the pressure and cooling, spin and charge density wave states are suppressed and give way to a superconducting state. As for the magnetic field effect, we find generally that spin-triplet pairing mediated by a coexistence of 2kF spin and 2kF charge fluctuations can be strongly enhanced by applying magnetic field rather than triplet pairing due to a ferromagnetic spin fluctuations. Applying the above idea to (TMTSF)2X compounds, a magnetic field induced singlet-triplet transition is consistent with above mechanism in (TMTSF)2ClO4.  相似文献   

15.
The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 . 2MeOH are reported. The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of Fe III ions. The magnetic susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/k B = - 27.5±0.5 K. The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz. The intra-molecular interactions of the Fe III ions are analyzed and the on-site anisotropy of the Fe III due to the ligand-configuration is determined to d /k B = - 0.633±0.008K. Received 28 October 2002 / Received in final form 22 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: bernd@piobelix.physik.uni-karlsruhe.de  相似文献   

16.
Proton nuclear magnetic resonance (NMR) T1 in a single crystal of copper formiate tetradeuterate is used to study the correlated Cu2+ spin dynamics and to derive the temperature behavior of the in-plane magnetic correlation length. The results are compared with the predictions of recent theoretical models for the spin dynamics in planar quantum Heisenberg antiferromagnets in a wide temperature range (from the Néel temperature up to a reduced temperatureT/J ~ 1.4, withJ in-plane exchange integral). In particular, it is shown that, in contrast to the predictions of the nonlinear σ model, no crossover to a quantum critical regime occurs and that the experimental findings are well reproduced by deriving the NMR relaxation rate in the framework of the standard mode-mode coupling theory.  相似文献   

17.
Luminescence from Cd1-xMnxSe, with x~10-1, shows strong circular polarization in the presence of a weak magnetic field. The polarization saturates at fields much smaller than does the magnetization. The carrier-Mn2+ exchange interaction is responsible for the field and temperature dependence of the polarization. At high temperatures, the polarization is similar to that inferred from band splittings; at lower temperatures, it is modified by bound magnetic polaron effects and a spin diffusion bottleneck.  相似文献   

18.
To-date, all experiments switching perpendicular magnetic anisotropy (PMA) materials with in-plane spin polarization require external B-fields. Here, in two approaches, it is shown that with Rashba-type in-plane spin polarization and PMA, bistable switching is achievable without external B  -fields, and at currents on the order of 107 A/cm2107 A/cm2, consistent with recent experiments. Utilization of PMA is primarily discussed, demonstrating the potential for two possibilities: (1) in-plane polarization as a ‘natural’ candidate for precessional switching and (2) bistable switching using a tilted anisotropy axis. Both are shown to lead to stable perpendicular switching without an external B-field, even though spin polarization is in-plane.  相似文献   

19.
In this paper, we theoretically study the effect of the in-plane magnetic field on spin polarization in the presence of the Dresselhaus spin–orbit effect. It is shown that the large spin polarization can be achieved in such a nanostructure due to the effects of both the Dresselhaus spin–orbit term and the in-plane magnetic field, but the latter plays a main role in the tunneling process. It is also shown that with the increase of in-plane magnetic field, the degree of spin splitting obviously becomes larger.  相似文献   

20.
In this work we studied the charge carriers' behaviour in quantum structures where the symmetry with respect to space coordinates and time-reversal symmetry are broken simultaneously. As the models of such structures we considered finite triangular as well as finite semi-parabolic quantum wells placed in external magnetic field. We have shown by numerical analysis that the energy spectra of charge carriers in such structures are anisotropic with respect to in-plane (transverse) motion ?n(+kx)≠?n(−kx). This leads to the anisotropy of charge carrier's in-plane momentum transfer which can be very naturally explained by introducing the concept of charge carriers ‘renormalized’ effective masses. The anisotropy of momentum transfer leads to interesting photo-galvanic effect, the anisotropy of photo-conductivity σ(+kx)≠σ(−kx) and as it follows from our calculations, the effect though not very great, could be measurable for the magnetic field of about few T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号