首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations.  相似文献   

2.
The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations.  相似文献   

3.
Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)- dimensional dispersive long-wave equations are obtained.  相似文献   

4.
In this Letter, a variable-coefficient extended mapping method is proposed to seek new and more general exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients and (2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, many new and more general exact solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear evolution equations in mathematical physics.  相似文献   

5.
Based on a new intermediate transformation, a variable-coeFficient hyperbola function method is proposed.Being concise and straightforward, it is applied to the (2 1)-dimensional variable-coeFficient Broer-Kaup system. As a result, several new families of exact soliton-like solutions are obtained, besides the travelling wave. When imposing some conditions on them, the new exact solitary wave solutions of the (2 1)-dimensional Broer Kaup system are given. The method can be applied to other variable-coeFficient nonlinear evolution equations in mathematical physics.  相似文献   

6.
Based on a known transform, the exact solutions of (2 1)-dimensional Broer-Kaup equations are investigated by using the method of direct integral. A kind of new exact solutions of Broer Kaup equations are obtained,which contain previous results about solitary wave solutions.  相似文献   

7.
The modified simple equation method is an interesting technique to find new and more general exact solutions to the fractional differential equations in nonlinear sciences. In this paper, the method is applied to construct exact solutions of (2+1)-dimensional conformable time-fractional Zoomeron equation and the conformable space-time fractional EW equation.  相似文献   

8.
(2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解   总被引:3,自引:0,他引:3       下载免费PDF全文
智红燕  王琪  张鸿庆 《物理学报》2005,54(3):1002-1008
借助于符号计算软件Maple,通过一种构造非线性偏微分方程(组)更一般形式精确解的直接方法即改进的代数方法,求解(2+1) 维 Broer-Kau-Kupershmidt方程,得到该方程的一系列新的精确解,包括多项式解、指数解、有理解、三角函数解、双曲函数解、Jacobi 和 Weierstrass 椭圆函数双周期解. 关键词: 代数方法 (2+1) 维 Broer-Kau-Kupershmidt 方程 精确解 行波解  相似文献   

9.
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.  相似文献   

10.
By a known transformation, (2 1)-dimensional Brioer Kaup equations are turned to a single equation.The classical Lie symmetry analysis and similarity reductions are performed for this single equation. From some of reduction equations, new exact solutions are obtained, which contain previous results, and more exact solutions can be created directly by abundant known solutions of the Burgers equations and the heat equations.  相似文献   

11.
A nonlinear transformation and some multi-solition solutions for the (2+1)-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear transformation, we reduce the (2+1)-dimensional GBK system to a simple linear evolution equation. Solving this equation, we can obtain some new explicit exact solutions of the original equations by means of the extended hyperbola function method.  相似文献   

12.
In this paper,the separation transformation approach is extended to the(N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3 He superfluid.This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation.Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method.Finally,many new exact solutions of the(N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation.For the case of N 2,there is an arbitrary function in the exact solutions,which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.  相似文献   

13.
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+1)-dimensional KK equation by the symmetry method and the (G, /G)-expansion  method. Consequently, we find some new solutions of (2+1)-dimensional KK equation,  including similarity solutions, solitary wave solutions, and  periodic solutions.  相似文献   

14.
In this paper, the separation transformation approach is extended to the (N+1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3He superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N+1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N>2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.  相似文献   

15.
黄文华  金美贞 《中国物理》2003,12(4):361-364
The deformation mapping method is applied to solve a system of (2+1)-dimensional Boussinesq equations. Many types of explicit and exact travelling plane wave solutions, which contain solitary wave solutions,periodic wave solutions,Jacobian elliptic function solutions and others exact solutions, are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and the cubic nonlinear Klein-Gordon equation.  相似文献   

16.
A new generalized transformation method is presented to find more exact solutions of nonlinear partial differential equation. As an application of the method, we choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.  相似文献   

17.
A new generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation, which has more new solutions. More new multiple soliton-like solutions are obtained for the (3 1)-dimensional Burgers equation with variable coefficients.  相似文献   

18.
<正>To seek new infinite sequence of exact solutions to nonlinear evolution equations,this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation.Based on the tanhfunction expansion method and homogenous balance method,new infinite sequence of exact solutions to Zakharov-Kuznetsov equation,Karamoto-Sivashinsky equation and the set of(2+l)-dimensional asymmetric Nizhnik-Novikov-Veselov equations are obtained with the aid of symbolic computation system Mathematica.The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations.  相似文献   

19.
陈怀堂  张鸿庆 《中国物理》2003,12(11):1202-1207
A new generalized Jacobi elliptic function method is used to construct the exact travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation which has more new solutions. More new doubly periodic and multiple soliton solutions are obtained for the generalized (3+1)-dimensional Kronig-Penny (KP) equation with variable coefficients. This method can be applied to other equations with variable coefficients.  相似文献   

20.
In this paper, by improving some procedure of extended tanh-function method, some new exact solutions to the integrable Broer-Kaup equations in (2+1)-dimensional spaces are obtained, which include soliton-like solutions, solitary wave solutions, trigonometric function solutions, and rational solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号