首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

2.
The NaCdVO4-Cd3V2O8 and CdO-V2O5 sections of the ternary system Na2O-CdO-V2O5 have been studied and the crystal structures of Cd3V2O8 and Cd18V8O38 compounds were determined from single-crystal X-ray diffraction data. Cd3V2O8 crystallizes with the maricite-type structure in space group Pnma, a=9.8133(10) Å, b=6.9882(10) Å, c=5.3251(10) Å and Z=4, whereas Cd18V8O38 crystallizes in space group P1 with a new-type structure, a=8.5761(14), b=8.607(3), c=12.896(2) Å, α=95.64(1), β=102.45(1), γ=108.42(1)° and Z=1. The Cd3V2O8 structure is made up of Cd1O4 infinite chains of edge-sharing Cd1O6 octahedra which are parallel to the b direction. The Cd1O4 chains are linked together by VO4 tetrahedra and strongly distorted Cd2O4 tetrahedra. The structure of Cd18V8O38 is based on an ordered three-dimensional framework of cadmium and vanadium polyhedra that share corners. The distorted CdO6 octahedra, CdO5 trigonal bipyramids and CdO5 square pyramids share corners, edges or faces.  相似文献   

3.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

4.
Two new tellurites, NH4RbTe4O9·2H2O and NH4CsTe4O9·2H2O have been synthesized and characterized. The compounds were synthesized hydrothermally, in near quantitative yields, using the alkali metal halide, TeO2, and NH4OH as reagents. The iso-structural materials exhibit layered, two-dimensional structural topologies consisting of TeOx (x=3, 4, or 5) polyhedra separated by NH4+, H2O, Rb+ or Cs+ cations. Unique to these materials is the presence of TeO3, TeO4, and TeO5 polyhedra. Thermogravimetric and infrared spectroscopic data are also presented. Crystal data: NH4RbTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.917(3) Å, b=6.7002(11) Å, c=21.106(5) Å, β=101.813(2)°, V=2618.5(9) Å3, Z=8; NH4CsTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.9880(12) Å, b=6.7633(4) Å, c=21.476(2) Å, β=102.3460(10)°, V=2694.2(3) Å3, Z=8.  相似文献   

5.
The new complex oxide Na2SrV3O9 was synthesized and investigated by means of X-ray diffraction, electron microscopy and magnetic susceptibility measurements. This oxide has a monoclinic unit cell with parameters a=5.416(1) Å, b=15.040(3) Å, c=10.051(2) Å, β=97.03(3)°, space group P21/c and Z=4. The crystal structure of Na2SrV3O9, as determined from X-ray single-crystal data, is built up from isolated chains formed by square V4+O5 pyramids. Neighboring pyramids are linked by two bridging V5+O4 tetrahedra sharing a corner with each pyramid. The Na and Sr atoms are situated between the chains. Electron diffraction and HREM investigations confirmed the crystal structure. The temperature dependence of the susceptibility indicates low-dimensional magnetic behavior with a sizeable strength of the magnetic intra-chain exchange J of the order of 80 K, which is very likely due to superexchange through the two VO4 tetrahedra linking the magnetic V4+ cations.  相似文献   

6.
Three new tellurites, LaTeNbO6 and La4Te6M2O23 (M=Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La2O3, Nb2O5 (or Ta2O5), and TeO2 as reagents. The structures of LaTeNbO6 and La4Te6Ta2O23 were determined by single crystal X-ray diffraction. LaTeNbO6 consists of one-dimensional corner-linked chains of NbO6 octahedra that are connected by TeO3 polyhedra. La4Te6M2O23 (M=Nb or Ta) is composed of corner-linked chains of MO6 octahedra that are also connected by TeO4 and two TeO3 polyhedra. In all of the reported materials, Te4+ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO6, triclinic, space group P−1, a=6.7842(6) Å, b=7.4473(6) Å, c=10.7519(9) Å, α=79.6490(10)°, β=76.920(2)°, γ=89.923(2)°, Z=4; La4Te6Ta2O23, monoclinic, space group C2/c, a=23.4676(17) Å, b=12.1291(9) Å, c=7.6416(6) Å, β=101.2580(10)°, Z=4.  相似文献   

7.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

8.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

9.
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4.  相似文献   

10.
A novel sodium lead pentaborate, NaPbB5O9, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB5O9 crystallizes in the monoclinic space group P21/c with a=6.5324(10) Å, b=13.0234(2) Å, c=8.5838(10) Å, β=104.971(10)°, and Z=4. The crystal structure is composed of double ring [B5O9]3− units, [PbO7] and [NaO7] polyhedra. [B5O9]3− groups connect with each other forming two-dimensional infinite [B5O9]3− layers, while [PbO7] and [NaO7] polyhedra are located between the layers. [PbO7] polyhedra linked together via corner-sharing O atom forming novel infinite [PbO6] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB5O9 were reported.  相似文献   

11.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

12.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

13.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

14.
High-pressure synthesis experiments in the system Na2O-Y2O3-SiO2 revealed the existence of a previously unknown polymorph of NaYSi2O6 or Na3Y3[Si3O9]2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi2O6 crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å3, R(|F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si3O9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.  相似文献   

15.
16.
The crystal structure of Na3DySi6O15 has been solved and refined to an R1=2.97% (wR2=8.25%) for 1311 independent reflections. The compound was found to crystallize within the orthorhombic system with the space group Cmca (Z=8) and the lattice parameters: a=14.590(7) Å, b=17.813(4) Å, c=10.519(2) Å, V=2734.0 Å3, Dcal=3.11 g/cm3. The structure of Na3DySi6O15 is a filled variant of the zektzerite with S like corrugated double chains of [SiO4] tetrahedral, connected via Na+ and Dy3+ cations and running parallel to c-axis. The three-dimensional network results from the packing of these chains along [100] by skewering them in rods represented by the tunnels delimited by the S shape of the silicate chains. One of the main peculiar features of the Na3DySi6O15 structure is the location of Na+ in tetrahedral sites with rather short Na-O bond lengths (2×2.243 and 2×2.262 Å).  相似文献   

17.
Subsolidus phase relation studies in the NaSb3O7-Na3SbO4-CuO-CuSb2O6 quadrangle of Na2O-CuO-Sb2On system at 1123-1173 K revealed the formation of one new compound Na3Cu2SbO6. It is a superstructure derived from α-NaFeO2 type, space group C2/m, lattice constants: a=5.6759(1) Å, b=8.8659(1) Å, c=5.8379(1) Å, β=113.289(1)°. All ions are in octahedral environment, but CuO6 polyhedron exhibits strong elongation due to Jahn-Teller effect (Cu-O: 2.000(2) Å×2, 2.021(2) Å×2, 2.494(3) Å×2), whereas SbO6 octahedron is almost regular. The relationship to other similar superlattices is discussed.  相似文献   

18.
Crystal structure of a series of mixed-metal oxides, T2Mo3O8 (T=Mg, Co, Zn and Mn; P63mc; a=5.7628(1) Å, c=9.8770(3) Å for Mg2Mo3O8; a=5.7693(3) Å, c=9.9070(7) Å for Co2Mo3O8; a=5.7835(2) Å, c=9.8996(5) Å for Zn2Mo3O8; a=5.8003(2) Å, c=10.2425(5) Å for Mn2Mo3O8) was investigated by X-ray diffraction on single crystals. Structural analysis, magnetization measurements, X-ray photoemission spectroscopy and cyclic voltammetry showed that the Mn ions at the tetrahedral and octahedral sites in Mn2Mo3O8 adopt different valences of +2 and 2+δ (δ>0), respectively. The formal valence of the Mo3 in Mn2Mo3O8 is 12−δ to retain electric neutrality of the compound. In contrast, the T ions and Mo3 in T2Mo3O8 (T=Mg, Co and Zn) adopt the valences of +2 and +12, respectively.  相似文献   

19.
The complex oxide Na3Fe2Mo5O16 has been synthesized, and its crystal structure was determined by single-crystal X-ray diffraction (space group (SG) P-3m1; a=5.7366(6) Å, c=22.038(3) Å; Z=2). The compound can be considered as a new structure type containing Mo3O13 cluster units, which can be derived from the Na2In2Mo5O16 structure model by doubling of the cell along the c-axis. Na3Fe2Mo5O16 crystallizes in centrosymmetric SG (P-3m1) and the positions of the sodium atoms are fully occupied in contrast to the proposed Na2In2Mo5O16 model SG (P3m1). Magnetic properties of Na3Fe2Mo5O16 were studied by superconducting quantum interference device measurements, revealing antiferromagnetic ordering below max=10(1) K. Thermal stability in air was investigated by in situ high-temperature X-ray powder diffraction. Structural relationships to Na2In2Mo5O16 and NaFe(MoO4)2 are discussed.  相似文献   

20.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号