首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.M. Essen  K. Wandelt 《Surface science》2007,601(16):3472-3480
The adsorption of ethene (C2H4) on Pt(1 1 1) and the Pt3Sn/Pt(1 1 1) and Pt2Sn/Pt(1 1 1) surface alloys has been investigated experimentally by high-resolution electron energy loss spectroscopy and temperature programmed desorption. The experimental results have been compared with density functional theory (DFT) calculations allowing us to perform a complete assignment of all vibration modes and loss features to the species present on the surfaces. On Pt(1 1 1) as well as on the Pt-Sn surface alloys an η2 di-σ-bonded conformation of ethene has been found to be the most stable adsorbed form. In addition to this majority species a minor amount of π-bonded ethene has been identified, which is more abundant on the Pt2Sn surface alloy than on the other surfaces. Additionally the HREELS spectra of ethene on Pt(1 1 1) and the Pt-Sn surface alloys differ only slightly in terms of the energetic positions of the loss peaks.  相似文献   

2.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

3.
H. Rauscher  R.J. Behm 《Surface science》2007,601(19):4608-4619
The interaction of CO with structurally well-defined PtxRuy surface alloys supported on Ru(0 0 0 1) was investigated by thermal desorption spectroscopy and infrared reflection-absorption spectroscopy. The surface composition and the distribution of the surface atoms were controlled by high resolution scanning tunneling microscopy. On these surfaces, which have a nearly random distribution of the two surface species, the adsorption (and desorption) of CO is strongly modified compared to the pure elemental surfaces, by strain effects and electronic ligand effects. CO adsorbs exclusively in a linear configuration on Pt and Ru atoms for all surfaces investigated. The adsorption energy of CO is lowered on the alloy surfaces with respect to both Pt(1 1 1) and Ru(0 0 0 1), similar as for pseudomorphic monolayer Pt films. For both Pt and Ru sites the adsorption strength decreases with increasing Pt concentration.  相似文献   

4.
In this work, we report density functional theory calculations exploring H2S dissociation on the (1 1 1) surfaces of Pd, Cu, Ag, Au, and various bimetallic surfaces consisting of those metals. To understand the contributions of lattice strain and electronic ligand effects, the thermodynamics of each elementary dissociation step were explored on model bimetallic surfaces, including PdMPd sandwiches and Pd pseudomorphic overlayers, as well as strained Pd(1 1 1) surfaces and homogeneous Pd3M alloys. Sulfuric (H2S, SH, and S) adsorption energies were found to correlate very well with lattice constant, which can be explained by the strong correlation of the lattice constant with d-band center, Fermi energy, and density of states at the Fermi level for strained Pd(1 1 1) surfaces. Compressing the Pd lattice shifts the d-band center away from the Fermi level, lowers the Fermi energy, and reduces the density of d-states at the Fermi level. All three effects likely contribute to the destabilization of sulfuric adsorption on Pd alloys. Introducing ligand effects was found to alter the distribution of the d-states and shift the Fermi level, which eliminates the correlation of the d-band center with the density of states at the Fermi level and the Fermi energy. As a result, the d-band center by itself is a poor metric of the H2S reaction energetics for bimetallic surfaces. Furthermore, combining strain with ligand effects was found to lead to unpredictable alterations of the d-band. Therefore, adsorption of H2S, SH, and S on PdMPd surfaces do not accurately predict adsorption on Pd3M surfaces.  相似文献   

5.
Pt/Pd anode catalysts for direct formic acid polymer electrolyte membrane fuel cells outperform both Pt and Pd in steady-state electrooxidation trials. Temperature-programmed desorption (TPD) experiments in ultra-high vacuum (UHV) were performed with 1 L formic acid on clean Pt(1 1 0), 0.6 monolayers Pd/Pt(1 1 0), and multilayer Pd/Pt(1 1 0) to gain a better understanding of the effect of Pd additions to a Pt catalyst. Both dehydration and dehydrogenation of formic acid occur on all three surfaces. As Pd coverage increases, the activation barrier for formate decomposition to CO2 decreases, but the effect does not explain the unusual activity of Pt/Pd in the electrochemical environment.  相似文献   

6.
Haibo Zhao 《Surface science》2004,573(3):413-425
Adsorption and desorption of trans-decahydronaphthalene (C10H18) and bicyclohexane (C12H22) can be used to probe important aspects of non-specific dehydrogenation leading to surface carbon accumulation and establish better estimates of activation energies for C-H bond cleavage at Pt-Sn alloys. This chemistry was studied on Pt(1 1 1) and the (2 × 2)-Sn/Pt(1 1 1) and (√3 × √3)R30°-Sn/Pt(1 1 1) surface alloys by using temperature programmed desorption (TPD) mass spectroscopy and Auger electron spectroscopy (AES). These hydrocarbons are reactive on Pt(1 1 1) surfaces and fully dehydrogenate at low coverages to produce H2 and surface carbon during TPD. At monolayer coverage, 87% of adsorbed C10H18 and 75% C12H22 on Pt(1 1 1) desorb with activation energies of 70 and 75 kJ/mol, respectively. Decomposition of C10H18 is totally inhibited during TPD on these Sn/Pt(1 1 1) alloys and decomposition of C12H22 is reduced to 10% of the monolayer coverage on the (2 × 2)-Sn/Pt(1 1 1) alloy and totally inhibited on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy. C10H18 and C12H22 are more weakly chemsorbed on these two alloys compared to Pt(1 1 1) and these molecules desorb in narrow peaks characteristic of each surface with activation energies of 65 and 73 kJ/mol on the (2 × 2) alloy and 60 and 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy, respectively. Alloyed Sn has little influence on the monolayer saturation coverage of these two molecules, and this is decreased only slightly on these two Sn/Pt(1 1 1) alloys. The use of these two probe molecules enables an improved estimate of the activation energy barriers E* to break aliphatic C-H bonds in alkanes on Sn/Pt alloys; E* = 65-73 kJ/mol on the (2 × 2)-Sn/Pt(1 1 1) alloy and E* ? 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy.  相似文献   

7.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

8.
Jakub Drnec 《Surface science》2009,603(13):2005-2014
The adsorption of Cs on Pt(1 1 1) surfaces and its reactivity toward oxygen and iodine for coverages θCs?0.15 is reported. These surfaces show unusual “anomalous” behavior compared to higher coverage surfaces. Similar behavior of K on Pt(1 1 1) was previously suggested to involve incorporation of K into the Pt lattice. Despite the larger size of Cs, similar behavior is reported here. Anomalous adsorption is found for coverages lower than 0.15 ML, at which point there is a change in the slope of the work function. Thermal Desorption Spectroscopy (TDS) shows a high-temperature Cs peak at 1135 K, which involves desorption of Cs+ from the surface.The anomalous Cs surfaces and their coadsorption with oxygen and iodine are characterized by Auger Electron Spectroscopy (AES), TDS and Low Electron Energy Diffraction (LEED). Iodine adsorption to saturation on Pt(1 1 1)(anom)-Cs give rise to a sharp LEED pattern and a distinctive work function increase. Adsorbed iodine interacts strongly with the Cs and weakens the Cs-Pt bond, leading to desorption of CsxIy clusters at 560 K. Anomalous Cs increases the oxygen coverage over the coverage of 0.25 ML found on clean Pt. However, the Cs-Pt bond is not significantly affected by coadsorbed oxygen, and when oxygen is desorbed the anomalous cesium remains on the surface.  相似文献   

9.
We have investigated the Ce 4f electronic states in the Ce/Pd(1 1 1) and Ce-oxide/Pd(1 1 1) systems, using resonant photoemission (Ce 4d → 4f transitions), and XPS to understand Pd-Ce interactions in ultra thin layers of cerium and ceria deposited on Pd(1 1 1). Cerium deposited on Pd(1 1 1) at room temperature forms surface Ce-Pd alloys with Ce rich character, while a Pd rich Ce-Pd alloy is formed by heating to 700 °C. A modification of the chemical state of Ce can also be seen after oxygen exposure. RPES provides evidence that Ce-oxide layers deposited on Pd(1 1 1) have a CeO2 (Ce4+) character, however a net contribution of the Ce3+ states is also revealed. The Ce3+ states have surface character and are accompanied by oxygen vacancies. Heating to 600 °C causes Ce-oxide reduction. A significant shift of Pd 4d-derived states, induced by Pd 4d and Ce 4f hybridization, was observed. The resonant features in the valence band corresponding to Ce4+, Ce3+ and Ce0 states have been investigated for various Pd−Ce(CeOx) coverages.  相似文献   

10.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated.  相似文献   

11.
The possibility of Pt–Cr surface alloys formation on Pt(0 0 1) was investigated and their magnetism was calculated by the full-potential linearized augmented plane wave (FLAPW) method with eight different atomic configurations. The most stable structure was calculated to be the Pt-segregated L12 ferromagnetic surface alloy. A3B types (L12 or D022) were more stable compared to AB types (L10). It implies that the A3B type surface alloys may be formed when depositing a monolayer of Cr on Pt(0 0 1). It was found from the total energy calculations that there exists a strong tendency of the Pt segregation. The segregation further stabilizes the surface alloy significantly. The work function of the most stable surface alloy was calculated to be 6.02 eV and the magnetic moment of the surface Cr was much enhanced to 3.3 μB. It is a quite interesting finding that the coupling between Cr and Pt atoms on the surface plane is ferromagnetic in the Pt-segregated L12 ferromagnetic surface alloy, while the coupling is antiferromagnetic in the bulk.  相似文献   

12.
C. Morin  D. Simon 《Surface science》2006,600(6):1339-1350
Catalytic hydrogenation of aromatic compounds is an important process in petroleum industry. Understanding it through experimental or theoretical research can help to improve its efficiency. This work presents a first principles density functional theory study of the intermediates for the first four hydrogenations steps of the smallest aromatic compound, benzene, into C6H10 species, on two popular catalytic metals, palladium and platinum, described by periodic models. Different structures have been studied for the intermediate C6H6+n species, with a various degree of conservation of the conjugation. Some intermediates would present in gas phase a closed-shell conjugated structure, while other would correspond to multiple radicals with a massive destruction of the benzene π system. The Pd and Pt(1 1 1) surfaces strongly differ in terms of most stable structure for the intermediates. On Pd the most conjugated intermediates, i.e. the most stable in gas phase, is clearly preferred. In contrast, on Pt, multiple radical species, highly unstable in gas phase, are strongly stabilized by coupling with the surface. This thermodynamic study indicates a different trend for the hydrogenation mechanism: a clear successive 1-2-3… hydrogenation of neighboring carbon atoms on Pd keeping the largest conjugated fragment, and a nonconsecutive attack, with a maximum breaking of benzene conjugation on Pt.  相似文献   

13.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

14.
E.L. Wilson  G. Thornton 《Surface science》2006,600(12):2555-2561
Reflection absorption infrared spectroscopy (RAIRS) has been used to investigate the adsorption of CO on CeO2−x-supported Pd nanoparticles at room temperature. The results show that when CeO2−x is initially grown on Pt(1 1 1), a small proportion of the surface remains as bare Pt sites. However, when Pd is deposited onto CeO2−x/Pt(1 1 1), most of the Pd grows directly on top of the CeO2−x(1 1 1). RAIR spectra of CO adsorption on 1 ML Pd/CeO2−x/Pt(1 1 1) show a broad CO-Pd band, which is inconsistent with a single crystal Pd surface. However, the 5 ML and 10 ML Pd/CeO2−x/Pt(1 1 1) spectra show vibrational bands consistent with the presence of Pd(1 1 1) and (1 0 0) faces, suggesting the growth of Pd nanostructures with well defined facets.  相似文献   

15.
We have performed ab initio Density Functional Theory (DFT) based calculations to observe the reactivity of the Pd(2 1 1) and Cu(2 1 1) surfaces towards O2. In order to properly address the adsorption dynamics, the static potential energy surface calculations have been complemented with first principles molecular dynamics calculations, which reveal interesting steering effects that complicate the dissociation dynamics. We have found that on both surfaces the step microfacets are very reactive and the dissociation of the O2 molecule at room temperature occurs mostly on those sites.  相似文献   

16.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed.  相似文献   

17.
Yilin Cao 《Surface science》2006,600(19):4572-4583
To provide information about the chemistry of water on Pd surfaces, we performed density functional slab model studies on water adsorption and decomposition at Pd(1 1 1) surface. We located transition states of a series of elementary steps and calculated activation energies and rate constants with and without quantum tunneling effect included. Water was found to weakly bind to the Pd surface. Co-adsorbed species OH and O that are derivable from H2O stabilize the adsorbed water molecules via formation of hydrogen bonds. On the clean surface, the favorable sites are top and bridge for H2O and OH, respectively. Calculated kinetic parameters indicate that dehydrogenation of water is unlikely on the clean regular Pd(1 1 1) surface. The barrier for the hydrogen abstraction of H2O at the OH covered surface is approximately 0.2-0.3 eV higher than the value at the clean surface. Similar trend is computed for the hydroxyl group dissociation at H2O or O covered surfaces. In contrast, the O-H bond breaking of water on oxygen covered Pd surfaces, H2Oad + Oad → 2OHad, is predicted to be likely with a barrier of ∼0.3 eV. The reverse reaction, 2OHad → H2Oad + Oad, is also found to be very feasible with a barrier of ∼0.1 eV. These results show that on oxygen-covered surfaces production of hydroxyl species is highly likely, supporting previous experimental findings.  相似文献   

18.
To investigate the possibility of manipulating the surface chemical properties of finely dispersed metal films through ferroelectric polarization, the interaction of palladium with oppositely poled LiNbO3(0 0 0 1) substrates was characterized. Low energy ion scattering indicated that the Pd tended to form three-dimensional clusters on both positively and negatively poled substrates even at the lowest coverages. X-ray photoelectron spectroscopy (XPS) showed an upward shift in the binding energy of the Pd 3d core levels of 0.9 eV at the lowest Pd coverages, which slowly decayed toward the bulk value with increasing Pd coverage. These shifts were independent of the poling direction of the substrate and similar to those attributed to cluster size effects on inert supports. Thus, the spectroscopic data suggested that Pd does not interact strongly with LiNbO3 surfaces. The surface chemical properties of the Pd clusters were investigated using CO temperature programmed desorption. On both positively and negatively poled substrates, CO desorption from freshly deposited Pd showed a splitting of the broad 460 K desorption peak characteristic of bulk Pd into distinct peaks at 270 and 490 K as the Pd coverage was decreased below 1.0 ML; behavior that also resembles that seen on inert supports. It was found that a small fraction of the adsorbed CO may dissociate (<2%) for Pd on both positively and negatively poled substrates. The thermal response of the smaller Pd clusters on the LiNbO3 surfaces, however, was different from that of inert substrates. In a manner similar to Nb2O5, when CO desorption experiments were carried out a second time, the adsorption capacity decreased and the higher temperature desorption peak shifted from 490 K to below 450 K. This behavior was independent of the substrate poling direction. Thus, while there was evidence that LiNbO3 does not behave as a completely inert support, no significant differences between positively and negatively poled surfaces were observed. This lack of sensitivity of the surface properties of the Pd to the poling direction of the substrate is attributed to the three-dimensional Pd clusters being too thick for their surfaces to be influenced by the polarization of the underlying substrate.  相似文献   

19.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1).  相似文献   

20.
O. Ozturk  S. Ma  J. Zhou  D.A. Chen 《Surface science》2007,601(14):3099-3113
Pt, Rh, and Pt-Rh clusters on TiO2(1 1 0) have been investigated by scanning tunneling microscopy (STM), soft X-ray photoelectron spectroscopy (sXPS), and low energy ion scattering (LEIS). The surface compositions of Pt-Rh clusters are Pt-rich (66-80% Pt) for room temperature deposition of both 2 ML of Pt on 2 ML of Rh (Rh + Pt) and 2 ML of Rh on 2 ML of Pt (Pt + Rh). Pt and Rh atoms readily diffuse within the clusters at room temperature, and although diffusion is slower at 240 K, intermixing of Pt and Rh still occurs. The binding energies of surface and bulk states for Rh(3d5/2) and Pt(4f7/2) can be distinguished in sXPS studies, and an analysis of these spectra indicates that the surface compositions of the Pt + Rh and Rh + Pt clusters are similar at room temperature but not identical. In addition to sintering, the pure Pt, pure Rh and Pt-Rh clusters become completely encapsulated by titania upon heating to 700 K. sXPS investigations show that annealing the clusters to 850 K induces reduction of titania support to Ti+2 and Ti+3, with the extent of reduction being the greatest for Pt, the least for Rh and intermediate for Pt-Rh. We propose that TiO2 is reduced at the metal-titania interface on top of the clusters, not at the base of the clusters. Furthermore, the extent of titania reduction is greater for metal clusters with weaker metal-oxygen bonds because oxygen atoms are less likely to migrate to the top of the clusters, and therefore the encapsulating titania is oxygen-deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号