首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Rapid developments in the field of catalysis are leading to an increased demand for tailor-made catalysts. Water-soluble complex catalysts, which are being intensively investigated at the present time, combine the advantages of homogeneous and heterogeneous catalysis: simple and complete separation of the product from the catalyst, high activity, and high selectivity. From the large number of available water-soluble ligands, the appropriate catalysts can be developed for many reactions. The industrial applications in the fields of hydrogenation and hydroformylation have already indicated the wide scope of this type of catalyst. In addition, the annual production of 300 000 tons of butyraldehyde through application of water-soluble rhodium complexes at Hoechst AG in Oberhausen, Germany, has demonstrated the industrial importance of the concept of complex-catalyzed reactions in aqueous two-phase systems. The efficient operation of catalytic processes increasingly requires the loss-free recycling of the noble metal catalyst, and this can be simply and economically realized in two-phase systems. Special applications in biochemical problems open up developments in the field of water-soluble transition metal complexes that far transcend the familiar kinds of homogeneous catalysis. In the near future, the investigation and application of metal complex catalysts that are compatible with the physiological, cheap, and environmentally friendly solvent, water, is likely to become a high priority in catalysis research.  相似文献   

2.
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. These novel polymers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers, resulting in a rapid development of dendrimer chemistry. The position of the catalytic site(s) as well as the spatial separation of the catalysts appears to be of crucial importance. Dendrimers that are functionalized with transition metals in the core potentially can mimic the properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. This might yield superior catalysts with novel properties, that is, special reactivity or stability. Both the core and periphery strategies lead to catalysts that are sufficiently larger than most substrates and products, thus separation by modern membrane separation techniques can be applied. These novel homogeneous catalysts can be used in continuous membrane reactors, which will have major advantages particularly for reactions that benefit from low substrate concentrations or suffer from side reactions of the product. Here we review the recent progress and breakthroughs made with these promising novel transition metal functionalized dendrimers that are used as catalysts, and we will discuss the architectural concepts that have been applied.  相似文献   

3.
《中国化学快报》2023,34(6):107959
Metal-based catalysis, including homogeneous and heterogeneous catalysis, plays a significant role in the modern chemical industry. Heterogeneous catalysis is widely used due to the high efficiency, easy catalyst separation and recycling. However, the metal-utilization efficiency for conventional heterogeneous catalysts needs further improvement compared to homogeneous catalyst. To tackle this, the pursing of heterogenizing homogeneous catalysts has always been attractive but challenging. As a recently emerging class of catalytic material, single-atom catalysts (SACs) are expected to bridge homogeneous and heterogeneous catalytic process in organic reactions and have arguably become the most active new frontier in catalysis field. In this review, a brief introduction and development history of single-atom catalysis and SACs involved organic reactions are documented. In addition, recent advances in SACs and their practical applications in organic reactions such as oxidation, reduction, addition, coupling reaction, and other organic reactions are thoroughly reviewed. To understand structure-property relationships of single-atom catalysis in organic reactions, active sites or coordination structure, metal atom-utilization efficiency (e.g., turnover frequency, TOF calculated based on active metal) and catalytic performance (e.g., conversion and selectivity) of SACs are comprehensively summarized. Furthermore, the application limitations, development trends, future challenges and perspective of SAC for organic reaction are discussed.  相似文献   

4.
聚乙二醇(PEG)负载的催化剂具有较高的催化活性, 易于回收和循环使用, 因此受到人们极大的关注. 此外, PEG可以用作催化反应的流动相动态地担载催化剂, 通过“均相反应, 两相分离”实现均相催化剂的简单分离. 对这一领域的研究进展作一综述.  相似文献   

5.
Side-arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in-vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous-flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2-nanorod supported Rh catalyst, we demonstrate continuous-flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube-in-tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl-acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch-mode technique of parahydrogen bubbling through a suspension of the same catalyst.  相似文献   

6.
金炜阳  程党国  陈丰秋  詹晓力 《化学进展》2011,23(10):2021-2030
均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。  相似文献   

7.
A new method for chiral catalysts recycling, based on the supported ionic liquid asymmetric catalysis concept, has been developed. This concept involves the treatment of a monolayer of covalently attached ionic liquid on the surface of silica gel with additional ionic liquid. These layers serve as the reaction phase in which the homogeneous chiral catalyst is dissolved. As first application of this concept the L-proline-catalyzed aldol reaction has been carried out. Good yields and ee values, comparable with those obtained under homogeneous conditions have been obtained. Moreover, this material shows high regenerability.  相似文献   

8.
《Comptes Rendus Chimie》2003,6(8-10):1061-1077
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems, of which their use has been explored for various applications including catalysis. Dendritic catalysts potentially combine the advantages of both homogeneous and heterogeneous catalysis since the soluble dendritic catalyst can be separated from the product-stream by nano-filtration. In addition, dendritic effects on transition-metal catalysis can be expected, depending on the position of the catalytic site(s) as well as the spatial separation of the catalysts within the dendritic framework. We have prepared both core- and periphery-functionalized dendritic catalysts that are sufficiently large to enable separation by nano-filtration techniques. Here we review our findings using these promising novel transition metal-functionalized dendrimers as catalysts in several reactions. To cite this article: J.N.H. Reek, C. R. Chimie 6 (2003).  相似文献   

9.
杨玉川  魏莉  金子林 《有机化学》2004,24(6):579-584
温控非水液/液两相催化,是指一类由两种或多种液态有机物组成的催化反应体系,其特点是体系的相态变化可通过温度来调控,即体系在高温时相互混溶呈均相,低温不溶分成两相,催化剂和产物分别处于两相,从而为解决均相催化剂分离难的问题开拓了一个新方向,是液/液两相催化研究领域最引人注目的进展之一.首次以"温控"为主线将氟两相催化作为温控液/液两相催化的一个特定类型纳入"温控非水液/液两相催化"范畴,并与其它通过温度来调控的有机液/液两相和作者提出的温控相分离催化串在一起作一较为详细的评述.  相似文献   

10.
This critical review highlights the "ligand oriented catalyst design concept", a new catalyst design concept for olefin polymerization that has led to the development of high-activity catalysts. The concept has created a series of highly active ethylene polymerization catalysts, many of which show high activities comparable to those of group 4 metallocene catalysts. Moreover, these catalysts display unique polymerization catalysis to produce a wide variety of polymers that possess unprecedented molecular architectures that are either difficult or impossible to achieve using conventional catalysts (98 references).  相似文献   

11.
Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non-metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal–organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio-selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.  相似文献   

12.
Catalysis of electrochemical reactions at derivatized electrode surfaces may offer an attractive alternative to homogeneous catalysis as far as problems related to separation between catalyst and product and to minimizing the required amount of catalyst are concerned. In this context, several points are addressed regarding catalysis at a monolayer derivatized electrode: (1) catalytic efficiency in terms of preparative scale electrolysis and effect of side reactions destroying the active form of the catalyst;(2) comparison between monolayer derivatized electrode and homogeneous catalysis for systems having the same activation free energy; (3) the problem of redox (outer-sphere) catalysis at monolayer derivatized electrodes compared to naked conventional electrodes is discussed in terms of the current theories of adiabatic outer-sphere electron transfer involving the possible effects of collision frequency factors, image force energy and electrostatic work terms.  相似文献   

13.
Homogeneous catalysts generally possess superior catalytic performance compared to heterogeneous catalysts. However, the issue of catalyst separation and recycling severely limits their use in practical applications. Single‐atom catalysts have the advantages of both homogeneous catalysts, such as “isolated sites”, and heterogeneous catalysts, such as stability and reusability, and thus would be a promising alternative to traditional homogeneous catalysts. In the hydroformylation of olefins, single‐atom Rh catalysts supported on ZnO nanowires demonstrate similar efficiency (TON≈40000) compared to that of homogeneous Wilkinson's catalyst (TON≈19000). HAADF‐STEM and infrared CO chemisorption experiments identified isolated Rh atoms on the support. XPS and XANES spectra indicate that the electronic state of Rh is almost metallic. The catalysts are about one or two orders of magnitude more active than most reported heterogeneous catalysts and can be reused four times without an obvious decline in activity.  相似文献   

14.
Limited natural resources and an increasing demand for enantiomerically pure compounds render catalysis and especially heterogeneous asymmetric catalysis a key technology. The field has rapidly advanced from the initial use of chiral biopolymers, such as silk, as a support for metal catalysts to the modern research areas. Mesoporous supports, noncovalent immobilization, metal-organic catalysts, chiral modifiers: many areas are rapidly evolving. This Review shows that these catalysts have more to them than facile separation or recycling. Better activities and selectivities can be obtained than with the homogeneous catalyst and novel, efficient reaction mechanisms can be employed. Especially fascinating is the outlook for highly ordered metal-organic catalysts that might allow a rational design, synthesis, and the unequivocal structural characterization to give tailor-made catalysts.  相似文献   

15.
冯博  胡玉  李欢  侯震山 《有机化学》2008,28(3):381-389
非均相催化过程中常常出现产物的转化率低选择性差的问题, 而均相催化过程往往具有优异的催化性能, 但是却受制于催化剂、产物难于分离而达到循环使用的缺点. 近年来两相催化体系的发展为这些问题的解决提供了一条新途径. 超临界二氧化碳/聚乙二醇参与的两相体系是使用超临界二氧化碳作流动相, 聚乙二醇作为另一溶剂之一, 用于固定和稳定催化剂, 进行有机催化反应. 其显著特点是: 可在反应的同时实现分离的操作, 可实现均相催化过程的连续化. 综述了超临界二氧化碳/聚乙二醇体系的相行为及其性质, 并介绍了其在催化合成反应中的应用.  相似文献   

16.
17.
The first liquid-liquid biphasic synthesis of wax esters in a Lewis acidic ionic liquid, choline chloride·2ZnCl2 by the esterification of long chain carboxylic acids with long chain alcohols is described. The reported reaction system has the advantages of both homogeneous and heterogeneous catalysis with high product yield and the ease of product as well as catalyst separation without the use of an organic solvent. The ionic liquid studied plays the dual role of solvent as well as catalyst and is recycled up to six times without any significant loss of activity.  相似文献   

18.
Synthesis, characterization and evaluation of sulfonic resins as catalysts   总被引:1,自引:0,他引:1  
Ion-exchange resins have been often used as catalysts especially those based on styrene-divinylbenzene copolymers with sulfonic acid groups in the aromatic rings of polymer chains. That is due to the advantages of heterogenous catalysis over the homogeneous acid catalysis. Moreover, resin catalysts can often lead to high selectivity in organic reactions due to the matrix effects. Therefore, the study of copolymers synthesis conditions to determine the type of polymer structure produced as well as the characterization of sulfonic resins obtained thereof are of great interest. The current paper describes the synthesis, characterization and evaluation as catalysts of sulfonic resins derived from polymer supports synthesized by aqueous suspension polymerization of styrene and divinylbenzene. The reaction conditions were varied and polymer supports with different physical properties and morphological characteristics were obtained. The polymer supports were chemically modified by sulfonation. The resultant sulfonic resins had their catalyst activity evaluated in the esterification of acetic acid with n-butanol.  相似文献   

19.
Homogeneous and heterogeneous catalytic processes compete on industrial scale for more then three decades [1]. The advantages of homogeneous catalysis are beside others high activity, mild reaction conditions, high selectivity and no diffusion problems. The disadvantages of such systems include difficulties with recycling of the catalyst and product separation [2].  相似文献   

20.
Immobilised Mn(salen) catalysts with two different linkages were studied in the asymmetric epoxidation of cis/trans‐β‐methylstyrene using NaClO as oxidant. The immobilised Mn(salen) complexes inside nanopores can lead to different catalytic behaviour compared with that of homogeneous Jacobsen catalyst. The rigidity of the linkage was found to be a key factor affecting the catalytic performance of immobilised catalysts. The immobilised catalyst with a rigid linkage exhibited comparable chemical selectivity, enantioselectivity and cis/trans ratio of product formation to that obtained with homogeneous Jacobsen catalysts. In contrast, the immobilised catalyst with a flexible linkage gave remarkably lower chemical selectivity, enantioselectivity and inverted cis/trans ratio compared with the results obtained with the homogeneous Jacobsen catalyst and the immobilised catalyst with rigid linkage. Thus, for immobilised Mn(salen) catalysts, a rigid linkage connecting active centres to the support is essential to obtain activity and enantioselectivity as high as those obtained in homogeneous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号