首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic hydrogenations of olefins took place effectively in supercritical CO2 with Pd0 nanoparticles dispersed in the fluid phase using a water-in-CO2 microemulsion consisting of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as a surfactant, and 1-octanol as a cosolvent. The hydrogenated products dissolved in supercritical CO2 can be separated from the octanol solution containing AOT microemulsions with Pd0 nanoparticles by phase separation (upper phase, supercritical CO2 with hydrogenated products; lower phase, 1-octanol containing AOT microemulsions with Pd0 nanoparticles) accompanied by reduction of CO2 pressure. After collecting the hydrogenated products by flowing the upper CO2 phase to a collection vessel, the Pd0 nanoparticles remaining in the lower phase can be redispersed into supercritical CO2 by pressurizing the system to a pressure where a homogeneous phase is attained. The redispersed nanoparticles can be reused as catalysts for the next runs of the hydrogenations. Triphenylethylene was hydrogenated to 1,1,2-triphenylethane at conversions of 100% (1st-3rd runs), >99% (4th run), and >96% (5th run) using the recycled Pd0 nanoparticles. The feasibility of using other organic solvents as cosolvents is also studied in the present paper.  相似文献   

2.
Swelled plastics in supercritical carbon dioxide provide unique environments for stabilizing palladium and rhodium nanoparticles and for catalytic hydrogenation. Complete hydrogenation of benzene to cyclohexane can be achieved in 10 minutes using the plastic stabilized Rh nanoparticles at 50 degrees C in supercritical CO(2). High efficiency, reusability, and rapid separation of products are some advantages of the plastic stabilized metal nanoparticles for catalytic hydrogenation in supercritical CO(2).  相似文献   

3.
Hydrogen reduction of a Pd(II)-beta-diketone precursor in supercritical carbon dioxide produces palladium nanoparticles on multi-walled carbon nanotubes that exhibit promising catalytic properties for hydrogenation of olefins in carbon dioxide as well as electro-reduction of oxygen in fuel cell applications.  相似文献   

4.
Rhodium nanoparticles dispersed by a CO2 microemulsion are effective catalysts for rapid hydrogenation of arenes in supercritical CO2.  相似文献   

5.
Dendrimer-encapsulated nanoparticles are shown to be versatile catalysts for both the hydrogenation of styrene and Heck heterocoupling of iodobenzene and methacrylate in supercritical CO2 (scCO2).  相似文献   

6.
Palladium, rhodium, and bimetallic Pd/Rh nanoparticles synthesized in a water-in-hexane microemulsion can be deposited directly on surfaces of functionalized multiwalled carbon nanotubes with high yields. The CNT-supported Pd nanoparticles are active catalysts for hydrogenation of olefins, for carbon-carbon bond formation, and for carbon-oxygen bond cleavage reactions. The CNT-supported Rh nanoparticles are active catalysts for hydrogenation of arenes, and the CNT-supported bimetallic Pd/Rh nanoparticles show an unusually high catalytic activity for hydrogenation of anthracene. This simple and novel synthetic technique for making CNT-supported monometallic and bimetallic nanoparticles may have a wide range of catalytic applications for chemical syntheses.  相似文献   

7.
STRUCTURALCHARACTERIZATIONOFPd-SnO_2/D_(3520)CATALYSTSHuWeibing(HubeiinstituteforNationalities,Enshi,445000)ZhouZhongxin;Zhang...  相似文献   

8.
A facile and efficient method for the synthesis of tetrasubstituted olefins in supercritical carbon dioxide was developed by using carbon nanotubes-supported palladium nanoparticles (Pd/CNTs) as the catalyst. Compared with common Pd/C, Pd/CNTs could more effectively catalyze the reaction of dibromo-substituted olefins with boronic acids, affording the corresponding tetrasubstituted olefins with moderate to good yields. This environmentally benign route with an easy-to-handle catalyst provides an appealing alternative to the currently available methods.  相似文献   

9.
High selectivity to light alkenes can be achieved from CO and CO_2hydrogenation over K-Fe-MnO/Si-2 catalyst.The alkene selectivity isinsensitive to reaction temperature for CO hydrogenation,while apparentlyincreases for CO_2 hydrogenation with raising reaction temperature.An increasein alkene selectivity is observed for both CO and CO_2 hydrogenation with GHSVrising,While a decrease with the elevation of reaction pressure for both CO/H_2and CO_2/H_2 reaction.A two-step mechanism is suggested forCO_2 hydrogenation to form hydrocarbons,by which the variations incontributions of CO and HC as products of CO_2/H_2 reaction with change ofreaction temperature,GHSV and pressure are explained.Moreover,thecatalyst is favorable for selective production of light olefins,which can alsoconcern the slightly secondary reactions of light olefins to some extent.  相似文献   

10.
MIL-140-type metal organic frameworks(isoreticular zirconium oxide MOFs) with different aromatic moieties(phenyl,naphthalene,and biphenyl) have been synthesized and employed as the supports of palladium nanoparticles(Pd NPs).The catalysts were characterized by XRD,BET,TEM and CO chemisorption.The results reveal that Pd NPs are homogeneously dispersed on all materials whereas different accessibility to CO is observed.The hydrogenation performance in C=C saturation with respect to the effect of the aromatic moiety is compared.The Pd/MIL-140 A MOF with the highest hydrogenation activity among the three catalysts comprised of different aromatic rings points to a unique Pd-πinteraction between Pd and frameworks consisting of mono-phenyl groups(C_6H_4).  相似文献   

11.
A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.  相似文献   

12.
高汉荣  徐筠 《分子催化》1993,7(6):432-438
报道了四种不同P/Pd摩尔比的膦化聚2,6-二甲基1,4-苯醚负载把催化剂的加氢和异构化性能;通过XPS、电镜和远红外对催化剂进行了表征;并考察了溶剂和温度对催化剂活性的影响.  相似文献   

13.
In this work we synthesized Pd(II) immobilized on mesoporous silica by N-heterocyclic carbene (NHC) ionic liquids (ILs) with different alkyl chain lengths. The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), low-angle X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen sorption. The catalysts were used for the hydrogenation of alkenes and allyl alcohol. The results indicated that the catalysts were very active, selective, and stable. The selectivity for the hydrogenation of allyl alcohol to 1-propanol increased with the increase of the alkyl chain length of the ILs. The effect of supercritical CO(2) (scCO(2)) on the hydrogenation of allyl alcohol was also studied, and it was demonstrated that scCO(2) could enhance the selectivity of the reaction considerably. The XPS study showed that the valence of Pd(II) remained unchanged under hydrogenation conditions.  相似文献   

14.
A selective hydrogenation of maleic anhydride to either gamma-butyrolactone or succinic anhydride over simple Pd/Al2O3 catalyst under supercritical CO2 medium is described for the first time which has considerable promise for both lab-scale as well as industrial selective hydrogenations of low vapor pressure compounds without employing environmentally harmful organic solvents.  相似文献   

15.
Ag-Pd bimetallic nanoparticles were prepared directly in ultrathin TiO(2)-gel films by a stepwise ion-exchange/reduction approach. Ion-exchange sites were created in ultrathin films using Mg(2+) ions as template. Ag(+) ion was then incorporated by ion exchange, and converted into metallic nanoparticles by low-temperature H(2) plasma, regenerating ion-exchange sites. The same procedure was then carried out for Pd(2+) ion, producing Pd-on-Ag bimetallic nanoparticles, as TEM observation and plasmon resonance absorption indicate. By contrast, reversed metal incorporation procedure appeared to give a mixture of individual Ag and Pd nanoparticles, as confirmed by TEM, absorption spectroscopy and X-ray photoelectron spectroscopy. For hydrogenation of methyl acrylate, the catalytic activity of the Pd-on-Ag nanoparticle is 367 times as large as that of commercial Pd black and 1.6 times as large as that of Pd monometallic nanoparticle. The outstanding catalytic activity was explicable by the large fraction of the surface-exposed Pd atoms. The formation process of the bimetallic nanoparticle and their general morphological feature are discussed.  相似文献   

16.
Dual role for CO(2) : Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase.  相似文献   

17.
IntroductionItilasbeenshot'-nthattileadditionofMnOpromotertoFocatal}stcanresultinaremarkableimprovementinthesclectivit}'to11ghtalkenesforCOh}!drogenationll'l.Ho-c'cvcr.thecadetofMnOonCH4formationandCOconversionisvery'ambigUouslltolMoreover.MnOpromotergrca…  相似文献   

18.
Fe—Silicalite—2催化剂表面CO2加氢反应性能的研究   总被引:3,自引:0,他引:3  
研究了Fe/Silicalite-2催化剂CO2加氢低碳烯烃反应性能,利用CO2-TPD,CO2/H2-TPSR和CO/H2-TPSR表征手段,考察了铁含量及MnO助剂对Fe/Silicalite-2催化剂CO2吸附脱附及加氢反应性能的影响,表明随铁含量增加可提高催化剂对CO2的吸附能力,有利于提高CO2加氢反应的转化率。  相似文献   

19.
The Pd/fibroin (Fib) was easily prepared by the auto-reduction of the silk-fibroin conjugated Pd(OAc)2 using MeOH as a solvent and a reductant and exhibited good chemoselectivity in the hydrogenation of olefins and azides in the presence of aromatic carbonyls and/or halogens or an O-benzyl protective group.  相似文献   

20.
lntroductionInordcrtoselcctivcl}'produccIightoIcfinsfroms}'ngas.thcbinderusedforimprovingthecatal}'ststrcngthshouldbcfavorabIcforprimary'formingofligl1tolcfinsfroms}ngasandforprohibitingsidereactionsoflightoIcfi.sIll.lthasbccnshownthattheundesirablcstrengthofsilicalitc-2zcolitccanbcimprovcdb}addingbindcrs.Hot`ycver.thcadditionofthcbinder`"illcauscsomcchangcsinthcph}'sical-chcmicalstatcofthecatal}ticactivemetalas``cllasitscatal}ticbcha.io,ll'2I.InourprcviouspaperTiO2wasprovedtobcadcsirablcbi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号