首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cationic surfactant systems of different alkyl chain lengths with counterion, CnTAC(5 mmol/l)/3-Cl-Benzoate(12.5 mmol/l) (n=15, 16, 17, 18), were investigated for drag reduction, rheological behaviors, microstructure, and stress-induced precipitation. These are the first measurements of these characteristics for odd chain length (C15 and C17) quaternary ammonium surfactants. The lower and upper effective drag reduction temperature limits, viscoelasticity, and stress-induced precipitation temperature increased with alkyl chain length. Krafft temperature, critical turbidity temperature, and lower drag reduction effectiveness temperature limit showed a zigzag odd-even effect, while the stress-induced precipitation temperature did not. Light microscopy and cryo-TEM showed that cooling the C15 solution below 20 °C produced crystals, while above that temperature threadlike micelles were present. The same was true for the solutions of C18 that had threadlike micellar network microstructures when clear and crystals formed upon cooling. Micellar solutions can remain in a homogenous metastable state at a temperature below the Krafft temperature and above the critical turbidity temperature for days without external disturbance. Imposition of flow stress causes the systems to overcome the energy barrier and precipitate.  相似文献   

2.
Drag correction factors are calculated for the creeping motion of spheres descending in various associative polymers of different concentration with various sphere-container ratios and Weissenberg numbers. The simple-shear rheology and linear viscoelasticity of these polymeric fluids have been previously presented and modeled with the BMP (Bautista–Manero–Puig) equation of state (Mendoza-Fuentes et al., Phys Fluids 21:033104, 2009). The drag on the sphere is initially kept nearly constant for small Weissenberg numbers, We < 0.1. As the Weissenberg number increases, We < 0.1, a reduction in drag is found. Experimental results show the presence of a critical Weissenberg number at which a drag reduction occurs. The reduction in the drag correction factor is associated to the onset of extension-thinning, which coincides with the formation of a negative wake. No increase in the drag correction factor was observed, due to the simultaneous opposing effects of extension-thickening and shear-thinning viscosity. The shape of the drag correction factor curve may be predicted considering the extensional properties of the solutions, as suggested elsewhere (Chen and Rothstein, J Non-Newton Fluid Mech 116:205–215, 2004).  相似文献   

3.
There is considerable interest in the use of viscoelastic cationic surfactant-counterion mixtures in district heating and cooling systems to reduce pressure losses. A recent field test in a secondary system near Prague showed a 30+% reduction in pumping energy requirements.We have studied a number of commercial surfactants and we report here results of rheological, drag reduction and turbulence measurements on Arquad 18–50 (octadecyl trimethyl ammonium chloride (AR 18)) with an excess of sodium salicylate (NA). The concentration studied was 1.6 mM AR 18 and 4.0 mM NA which is about one third the concentration for excellent drag reduction in this surfactant's effective temperature range 30–90°C.Viscosity, , vs. shear rate,D, first normal stress difference,N 1, vs. shear rate, drag reduction (as pressure drop,i=P/1) vs. average velocity,U ave, in a 39.4 mm tube for AR 18, and turbulence intensity data for three drag reducing surfactants are reported.Of particular interest are the generally low turbulence intensities in all three directions which correspond to reduced heat, mass and momentum transfer rates compared to water, and the existence of large normal stress differences at 20°C for AR 18, a temperature at which no drag reduction occurs with this surfactant, indicating that normal stress effects do not correlate directly with drag reduction.The effect of time of pumping on increasing drag reduction demonstrates that this factor overwhelms the expected increase in drag reduction as temperature is raised from 18–19°C to 40.5°C.  相似文献   

4.
 The time-dependent transformation of an ionically charged lamellar phase (L α-phase) into a vesicle phase under the influence of shear is investigated using rheological and conductivity measurements. The L α-phase consists of the zwitterionic surfactant tetradecyldimethylaminoxide (C14DMAO), hexanol, oxalic acid and water. The experiments were carried out on the L α-phase in a well defined state. It was prepared by a special route from the neighbouring L 3-phase that consists of 100 mM C14DMAO, 250 mM hexanol and 5 mM oxalicdiethylester (OEE). The OEE hydrolyses in the L 3 -phase to oxalic acid and ethanol. The result is a virgin L α-phase which consists of stacked bilayers and which has not been exposed to shear. When this low-viscous phase is subjected to shear it is transformed into a highly viscous vesicle phase. The transformation of the L α-phase into vesicles under constant shear was monitored by recording the viscosity and conductivity with time. It is observed that at least three different time constants can be distinguished in the transformation process. The conductivity passes through a minimum (τ1) in the direction of shear. The viscosity first passes through a minimum (τ2) and then over a maximum (τ3). It is concluded that τ1 belongs to the complete alignment of the bilayer parallel to the wall, τ2 to the beginning of the break-up of the bilayers to the vesicles and τ3 to the complete transformation of the L α- to the vesicle phase. When the shear rate was varied, it was noted that the product of the time constants and shear is constant. Received: 30 June 1999/Accepted: 30 August 1999  相似文献   

5.
On pipe diameter effects in surfactant drag-reducing pipe flows   总被引:3,自引:0,他引:3  
Remarkable power saving in a fluid transport system is possible if the surfactant drag reduction technology is used. Application of surfactant drag reduction to district heating and cooling systems has been investigated in the past. The establishment of the scale-up law in drag-reducing pipe flows is one of the most important problems in this application. Main purpose of this study is aimed to develop a reliable scale-up law in surfactant drag-reducing flows. As the basic data of surfactant solutions, both non-Newtonian viscosity and viscoelasticity were experimentally determined. A turbulent eddy diffusivity model based on the Maxwell model was employed to estimate the drag reduction of surfactant solutions. The predictions by the turbulence model developed in this study with proper rheological characteristics of surfactant solutions has resulted in a reliable estimation of the pipe diameter effect in surfactant drag-reducing flows over the pipe diameter range from 11 to 150mm. Received: 30 June 1997 Accepted: 29 December 1997  相似文献   

6.
Two sets of cationic surfactants each with essentially the same alkyl chains but different headgroup structures were studied to investigate the effects of surfactant headgroup structure on micelle microstructures, drag reduction (DR) and rheological properties at certain counterion and surfactant concentrations. Cetyldimethylethylammonium bromide (CDMEAB) was compared with alkyltrimethyl ammonium bromide (CnTAB) and benzyldimethyl(hydrogenated tallow)ammonium chloride (DMHTB) was compared with alkyltrimethylammonium chloride (CmTAC), respectively. Surfactants with larger headgroups showed lower high temperature limits for DR. CDMEAB systems have better DR abilities than CnTAB below room temperature but the opposite is true at higher temperatures. DMHTB has stronger counterion binding ability than CmTAC, giving better DR properties than CmTAC at low counterion concentration, but has a lower upper temperature limit for DR. These results provide further understanding of the self-assembly nature of threadlike micelles of cationic surfactants and guidance for design of effective surfactant structures to meet particular DR requirements.  相似文献   

7.
The first part of the work presents an overview of the physical chemistry of surfactants which in aqueous solutions reduce the frictional loss in turbulent pipe flow. It is shown that these surfactants form rodlike micelles above a characteristic concentraionc t. The experimental evidence for rodlike micelles are reviewed and the prerequisites that the surfactant system must fulfill in order to form rodlike micelles are given. It is demonstrated by electrical conductivity measurements that the critical concentration for the formation of spherical micelles shows little temperature dependence, whereasc t increases very rapidly with temperature. The length of the rodlike micelles, as determined by electric birefringence, decreases with rising temperature and increases with rising surfactant concentration. The dynamic processes in these micellar systems at rest and the influence of additives such as electrolytes and short chain alcohols are discussed.In the second part, the rheological behaviour of these surfactant solutions under laminar and turbulent flow conditions are investigated. Viscosity measurements in laminar pipe and Couette flow show the build-up of a shear induced viscoelastic state, SIS, from normal Newtonian fluid flow. A complete alignment of the rodlike micelles in the flow direction in the SIS was verified by flow birefringence. In turbulent pipe flow, drag reduction occurs in these surfactant systems as soon as rodlike micelles are present in the solution. The extent and type of drag reduction, i.e. the shape of the friction factor versus Reynolds number curve, depends directly on the size, number and surface charge of the rodlike micelles. The friction factor curve of each surfactant investigated changes in the same characteristic way as a function of temperature. For each surfactant, independent of concentration, an upper absolute temperature limit,T L, for drag reduction exists which is caused by the micellar dynamics.T L is influenced by the hydrophobic chain length and the counter-ion of the surfactant system. A first attempt is made to explain the drag reduction of surfactants by combining the results of these rheological measurements with the physico-chemical properties of the micellar systems.  相似文献   

8.
An enclosed rotating disk apparatus (RDA) with rotational speed up to 5,500 rpm and with temperature control from −5 to 55°C was designed to screen the turbulent drag reducing effectiveness of small samples of newly synthesized drag reducing additives. First, the rotating disk was calibrated with water using both logarithmic and power law models. Then experiments were carried out to measure the frictional torque reduction for a drag reducing aqueous cationic surfactant system (5 mM Ethoquad O12 with 12.5 mM sodium salicylate) over a range of Re. The maximum drag reduction at 30°C was about 47% at Re = 1.90 × 106. For the first time, results with the RDA were compared with those in a circular pipe flow system. They showed similar trends indicating it is a useful screening device for small samples, giving conservative estimates of surfactant effectiveness compared with pipe flow.
Jacques L. ZakinEmail:
  相似文献   

9.
Rheology, drag reduction and cryo-TEM experiments were performed on Arquad 16–50/NaSal and Ethoquad O/12/NaSal surfactant systems at different counterion-to-surfactant ratios and at constant low surfactant concentrations, 5 mM, appropriate for drag reduction. The molar ratio of counterion-to-surface was varied from 0.6 to 2.5. All the surfactant systems described here are viscoelastic and drag reducing. The viscoelasticity and drag reducing effectiveness increase with increase in counterion/surfactant ratio. Network are present in the solutions with high ratio, and they are viscoelastic. However, shear is needed to induce network formation for solutions at low ratio. Cryo-TEM images confirm the existence of thread-like micelles which form entanglement networks, and show that the micellar network becomes denser with increasing counterion/surfactant ratio in one surfactant series. Both increase in the counterion/surfactant ratio and increase in the shear rate result in shorter relaxation times. For some of these systems, abrupt increase in viscosity is observed at certain shear rates which are time effects affecting microstructure rearrangements rather than formation of shear induced structures.  相似文献   

10.
Sodium carboxymethylcellulose (NaCMC) in solution represents a complex rheological system, since it forms aggregates and associations and hence higher-level structures and, depending on the synthesis, is only found in a molecularly dispersed form in exceptional cases. Rheo-mechanical investigations of the viscoelasticity showed that the Cox-Merz rule is not fulfilled. The aim was therefore to examine whether rheo-optics could be employed to provide more detailed conclusions about the parameters that influence the flow behavior of NaCMC than has hitherto been available with mechanical methods. The flow birefringence, Δn , rises as the degree of polymerization increases, and exhibits the same dependence on molar mass as does the viscosity: Δn M w 3.4. As the degree of polymerization increases while the shear rate remains constant, the polymer segments become more distinctly aligned in the direction of shear. Hence increasing the degree of polymerization also affects the solution structure, i.e. the interaction of the molecules with one another. The stress-optical rule only applies to a limited extent for this system. The stress-optical coefficient, C, is almost independent of the shear rate, but is strongly influenced by the concentration and attains a limiting value of 3 × 10−8 Pa−1. C was determined for a polymer in dilute solution and the curve obtained also enabled transitions in the solution structure to be recognized. Received: 1 May 1998 Accepted: 5 October 1998  相似文献   

11.
 We employ digital particle imaging velocimetry (DPIV) to investigate the influence of a drag reducing cationic surfactant additive, cetyltrimethyl-ammonium chloride (CTAC), on turbulent swirling flows generated in a cylindrical vessel either by a rotating disk or a rotating disk fitted with vertical flat blades. The largest concentration of CTAC used in this study (0.05 ≤ C ≤ 0.5 mmol/l) is an order of magnitude smaller than those used in experimental investigations of surfactant induced drag reduction in turbulent pipe/channel flows. Even for such dilute systems, a number of dramatic and intriguing effects are observed. In the case of disk-driven flow, it is shown that the surfactant has a non-monotonic influence on turbulence intensity: both radial and axial root mean square velocity fluctuations first increase with increasing surfactant concentration C, reach a maximum and decrease upon further increase in C. Moreover, the maximum intensity is attained at a concentration that is practically independent of the angular frequency Ω of the disk. For the flow driven by bladed impeller, the introduction of the surfactant leads to flow reversal at the impeller plane for low concentrations. Enhancement in the radial and azimuthal mean velocities is also observed. For relatively larger concentrations (=0.5 mmol/l), a mean flow field that consists of multiple transient mixing pockets emerges as Ω exceeds a critical value. Plausible mechanisms are proposed to explain these observations. Received: 11 September 2000 Accepted: 10 April 2001  相似文献   

12.
Linear viscoelastic behavior was investigated for aqueous solutions of perfluorooctyl sulfonate (C8F17SO 3; abbreviated as FOS) micelles having a mixture of tetraethylammonium (N+(C2H5)4; TEA) and lithium (Li+) ions as the counter-ions. The solutions had the same FOS concentration (0.1 mol l−1) and various Li+ fractions in the counter-ions, φLi = 0−0.6, and the FOS micelles in these solutions formed threads which further organized into dendritic networks. At T ≤ 15 °C, the terminal relaxation time τ and the viscosity η, governed by thermal scission of the networks, increased with increasing φLi up to 0.55. A further increase of φLi resulted in decreases of τ and η and in broadening of the relaxation mode distribution. These rheological changes are discussed in relation to the role of TEA ions in thermal scission: Previous NMR studies revealed that only a fraction of TEA ions were tightly bound to the FOS micellar surfaces and these bound ions stabilized the thread/network structures. The concentration of non-bound TEA ions, CTEA *, decreased and finally vanished on increasing φLi up to φLi * ≅ 0.6, and the concentration of the bound TEA ions significantly decreased on a further increase of φLi. The non-bound TEA ions appeared to catalyze the thermal scission of the FOS threads, and the observed increases of τ and η for φLi < 0.55 were attributed to the decrease of CTEA *. On the other hand, the decreases of τ and η as well as the broadening of the mode distribution, found for φLi > 0.55 (where CTEA * ≅ 0), were related to destabilization of the FOS threads/networks due to a shortage of the bound TEA ions and to the existence of concentrated Li+ ions. Viscoelastic data of pure FOSTEA and FOSTEA/FOSLi/TEACl solutions lent support to these arguments for the role of TEA ions in the relaxation of FOSTEA/FOSLi solutions. Received: 12 October 1999/Accepted: 1 November 1999  相似文献   

13.
In the present work the effects produced by the presence of two different surfactants (Abil B 8842 and Triton N 101) on the rheological properties of aqueous welan matrices are studied, both in steady and in oscillatory shear conditions. Welan is an acidic microbial polysaccharide having high thermal, pH, and salt stability. At sufficiently low concentrations it forms aqueous weak gel matrices which can be profitably used to regulate the rheological properties of disperse systems and improve their stability. Different systems are examined, having the same polysaccharide concentration (0.25 wt%) and different surfactant concentrations (up to 40 wt%, far beyond the range of practical interest for emulsion preparation). All the systems exhibit marked shear-thinning properties which can be described quite satisfactorily by the Cross equation. The concentration dependence of the zero-shear-rate viscosity as well as the mechanical spectra confirm that, in the concentration range considered, the aqueous welan systems are typically weakly structured fluids. The influence of both surfactants is examined in detail by comparing the behavior of the different classes of systems. Both surfactants reduce the polymer contribution at low shear, whereas an opposite action is exerted at high concentration and shear. These contrasting effects are ascribed to the different structural features of the polymer matrix under low stresses and high shear conditions, respectively. Received: 6 February 2000 Accepted: 1 November 2000  相似文献   

14.
Ultra-high viscosity alginates were extracted from the brown seaweeds Lessonia nigrescens (UHVN, containing 61% mannuronate (M) and 2% guluronate (G)) and Lessonia trabeculata (UHVT, containing 22% M and 78% G). The viscoelastic behavior of the aqueous solutions of these alginates was determined in shear flow in terms of the shear stress σ 21, the first normal stress difference N 1, and the shear viscosity η in isotonic NaCl solutions (0.154 mol/L) at T = 298 K in dependence of the shear rate [(g)\dot]\dot{\gamma} for solutions of varying concentrations and molar masses (3–10 × 105 g/mol, homologous series was prepared by ultrasonic degradation). Data obtained in small-amplitude oscillatory shear (SAOS) experiments obey the Cox–Merz rule. For comparison, a commercial alginate with intermediate chemical composition was additionally characterized. Particulate substances which are omnipresent in most alginates influenced the determination of the material functions at low shear rates. We have calculated structure–property relationships for the prediction of the viscosity yield, e.g., ηM wc–[(g)\dot]\dot{\gamma} for the Newtonian and non-Newtonian region. For the highest molar masses and concentrations, the elasticity yield in terms of N 1 could be determined. In addition, the extensional flow behavior of the alginates was measured using capillary breakup extensional rheometry. The results demonstrate that even samples with the same average molar mass but different molar mass distributions can be differentiated in contrast to shear flow or SAOS experiments.  相似文献   

15.
Turbulent Couette flow between two circular cylinders has been used for drag reduction experiments using surfactants. In the experiments presented here, only the outer cylinder rotates, the inner cylinder remains at rest and accurate measurements of the torque at the inner cylinder are measured. Water is used as a reference fluid. A drag reducing surfactant called Arquad S-50 (Akzo Nobel Surface Chemistry LLC, Chicago, Ill., USA) (5 mM)+NaSal (12.5 mM) was used as the drag reduction agent. This surfactant can reduce the drag up to 70% (a Reynolds number of about 70,000–150,000) as measured by pressure drop in a pipe flow. Experiments in Couette flow also show drag reduction in the turbulent range. Two arrangements were used, (1) one small trip-wire on the inner cylinder, and (2) four larger trip-wires on the outer cylinder. These trips reduce the critical Reynolds number for transition from laminar to turbulent flow. In case (1), we obtained 18% drag reduction at 5,000<Re<15,000 and in case (2), we obtained an average reduction of about 20% at 2,000<Re<10,000, increasing up to 30% at Re=15,000. The paper also discusses two important problems. First, the shear rate is not constant in the radial gap in circular Couette flow. For non-Newtonian fluids, where the molecular viscosity is a function of the shear rate, this effect must be considered. Second, which viscosity should be used in the Reynolds number? For pipe flow measurements, most authors use the viscosity of the solvent (generally water and Newtonian). For measurements in the Couette flow, we use a different approach, which is described in this paper. We conclude that Couette flow is a useful method for drag reduction investigations. Its advantage is the much smaller geometry in comparison to those of conventional test facilities such as wind tunnels, water, or oil channels or in tubes.  相似文献   

16.
Transient elongational rheology of two commercial-grade polypropylene (PP) and the organoclay thermoplastic nanocomposites is investigated. A specifically designed fixture consisting of two drums (SER Universal Testing Platform) mounted on a TA Instruments ARES rotational rheometer was used to measure the transient uniaxial extensional viscosity of both polypropylene and nanoclay/PP melts. The Hencky strain rate was varied from 0.001 to 2 s − 1, and the temperature was fixed at 180°C. The measurements show that the steady-state elongational viscosity was reached at the measured Hencky strains for the polymer and for the nanocomposites. The addition of nanoclay particles to the polymer melt was found to increase the elongation viscosity principally at low strain rates. For example, at a deformation rate of 0.3 s − 1, the steady-state elongation viscosity for polypropylene was 1.4 × 104 Pa s which was raised to 2.8 × 104 and 4.5 × 104 Pa s after addition of 0.5 and 1.5 vol.% nanoclay, respectively. A mesoscopic rheological model originally developed to predict the motion of ellipsoid particles in viscoelastic media was modified based on the recent developments by Eslami and Grmela (Rheol Acta 47:399–415, 2008) to take into account the polymer chain reptation. We show that the orientation states of the particles and the rheological behavior of the layered particles/thermoplastic hybrids can be quantitatively explained by the proposed model.  相似文献   

17.
Rheological characteristics of trimethylolethane (TME) clathrate–hydrate slurry treated with drag-reducing surfactants were investigated. Friction coefficients and apparent viscosities were measured when the concentration of TME and its hydrate fraction treated with and without drag-reducing surfactants were changed in several steps. From the results, it is found that the surfactant addition causes effective drag reduction in a pipe flow when the hydrate fraction becomes high, while effective drag reduction disappears in the cases of low hydrate fraction. The results of viscosity measurements indicate that the TME molecules disturb the formation of shear-induced structures (SIS) causing drag reduction phenomena. To investigate this interaction between TME and surfactant micelles, the effect of TME concentration on viscosity and relaxation time of solutions was discussed. From this, it was found out that there exists a critical concentration of TME on the formation of SIS and that it becomes larger as shear rate increases. Thus, we conclude that this interaction between TME and micellar structures causes less drag reduction for the cases of low hydrate fraction, while the drag reduction appears in cases of high hydrate fraction because TME concentration in liquid phase becomes small.  相似文献   

18.
The effect of the counterion salt sodium salicylate (Nasal) on the transient rheological properties of a drag-reducing surfactant system tris (2-hydroxyethyl) tallowalkyl ammonium acetate (TTAA) has been studied with both rheometric and rheo-optical methods. Three types of transient behavior for N1 and viscosity were identified in 5 mM TTAA solutions depending on the counterion concentration: induction and growth (below equimolar concentration); overshoot and growth (above equimolar concentration); and overshoot then plateau (at high concentrations of Nasal). The transient flow birefringence and orientation angle show trends similar to those of the viscosity and N1. The second type of transient behavior suggests a two-stage alignment and shear thickening process. The SIS buildup time from the quiescent state, the rebuilding time after a strong preshear, and the relaxation time were also obtained from N1 measurements, and show a maximum around equimolar conditions. The initial N1 and viscosity immediately after the flow startup, on the other hand, show a maximum around a ratio of 2.5 to 3 Nasal/TTAA. For solutions with a Nasal concentration in the ratio 1.5 to 3, the steady state values of N1 and viscosity do not show much variation with Nasal concentration over the shear rate range covered, however. The effect of an addition of sodium chloride (NaCI) to an equimolar Nasal/TTAA solution on the characteristic times and steady state values was also quantified. These rheological results provide us with tools to determine the optimal concentration ratio for practical drag reduction applications.  相似文献   

19.
Counterion chemical structure and counterion to cationic surfactant molar ratio, ξ, control counterion binding, micelle nanostructures, drag reduction (DR) effectiveness and rheological behavior of quaternary ammonium surfactant systems. The effects of chemical structures of four sodium para-halobenzoate (F, Cl, Br, I) counterions with different ξ values on these properties were compared for dilute solutions of cetyltrimethylammonium chloride (CTAC). Counterion binding was determined by zeta-potential and 1H NMR measurements. Nanostructures were determined by 1H NMR and cryo-TEM imaging. Nanostructures, drag reduction effectiveness measured over a range of temperatures and Reynolds numbers, shear viscosities and first normal stress differences N1 were related to the chemical structures of the four counterions and their molar ratios to CTAC.  相似文献   

20.
The influence of a dilute solution of the cationic surfactant C14Sal on the flow past a cylinder was investigated by means of LDV and Toepler Schlieren optics for visualization of both the flow and structure of the fluid. At low Reynolds numbers the flow is similar to the Newtonian Kármán vortex street. The periodic vortex shedding disappears simultaneously with the occurrence of a shear-induced structure. The alteration of the turbulence characteristics is especially pronounced in the turbulent velocity fluctuations with the u rms being many times over the values in water, whereas the v rms are drastically reduced. Received: 18 May 2000 / Accepted: 25 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号