首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanosize Co1?x Zn x Fe2O4 (x?=?0, 0.1, 0.3, and 0.4) have been synthesized by the precursor combustion technique via autocatalytic combustion of the mixed-metal fumarato-hydrazinate precursors. A key feature of these precursors is that they decompose autocatalytically once ignited to give the monophasic nanocrystalline ferrite. This fact is confirmed by X-ray powder diffraction analysis. The thermal decomposition pattern of the precursors has been studied by thermogravimetric and differential thermal analysis. The precursors have also been characterized by FTIR and chemical analysis to fix the chemical composition. The Curie temperature (T c) of the ??as-prepared?? oxide was determined by alternating current susceptibility measurements.  相似文献   

2.
Nanoparticles of the spinel ferrite, Co0.6Ni0.4Fe2O4 have been synthesized by the precursor combustion technique. This synthetic route makes use of a novel precursor viz. metal fumarato hydrazinate which decomposes autocatalytically after ignition to yield nanosized spinel ferrite. The X-ray powder diffraction of the ??as prepared?? oxide confirms the formation of monophasic nanocrystalline cobalt nickel ferrite. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been fixed as Co0.6Ni0.4Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ??as prepared?? oxide was determined by ac susceptibility measurements.  相似文献   

3.
Carboxylate hydrazinate complex involving mixed metals have been synthesized and used as precursor for preparing the nanocrystalline Mn?CNi?CZn ferrite. Chemical composition of complex was fixed from chemical analysis results, infrared studies, thermogravimetric and differential scanning calorimetric analysis and isothermal weight loss studies. Nano-crystalline Mn?CNi?CZn ferrite particles obtained by thermal autocatalytic decomposition were characterized using X-ray diffraction studies, infrared spectral studies and TEM measurement. Two peaks in the region of 340?C420 and 550?C660?cm?1 observed in the infrared spectrum of ??as synthesized?? oxide are characteristics of spinel ferrites. Average particle size of ??as synthesized?? Mn?CNi?CZn ferrite was found to be 10?nm. ??As synthesized?? Mn?CNi?CZn ferrite showed Curie point at 313?°C. Saturation magnetization (44.7?emu/g) observed for ??as synthesized?? Mn?CNi?CZn ferrite is lower than bulk material which is indicative of its nano-crystalline nature. Seebeck coefficient measurement has shown that the material exhibits n-type semiconducting behavior.  相似文献   

4.
The chemistry, structure, and properties of spinel ferrites are largely governed by the method of preparation. The metal carboxylato-hydrazinate precursors are known to yield nanosized oxides at a comparatively lower temperature. In this study, we are reporting the synthesis of one such precursor, cobalt nickel ferrous fumarato-hydrazinate which decomposes autocatalytically to give cobalt nickel ferrite nanoparticles. The XRD study of this decomposed product confirms the formation of single-phase spinel, i.e., Co0.5Ni0.5Fe2O4. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric (TG), and differential scanning calorimetric (DSC) analysis. The precursor has also been characterized by FTIR, EDX, and chemical analysis, and its chemical composition has been determined as Co0.5Ni0.5Fe2(C4H2O4)3·6N2H4.  相似文献   

5.
The effect of the Cr3+/Al3+ ratio on the crystallization temperature of mixed oxide compounds with a spinel structure and their structural features and morphological characteristics have been studied using a combination of physicochemical methods: thermal analysis, IR spectroscopy, X-ray powder diffraction, and electron microscopy. The role of temperature of synthesis and drying of Cu–Cr/Al hydroxy precursors in the formation of copper-containing spinels CuCr x Al2–x O4, where x = 0–2, has been elucidated. The results are of interest for selection of the optimal composition and conditions of synthesis and formation of copper-containing spinels for their practical use.  相似文献   

6.
The present study deals with preparation and characterization of spinel mixed oxide systems NiM 2 III O4, where MIII?=?FeIII, CrIII. In order to obtain 50% NiFe2O4/50% SiO2 and 50% NiCr2O4/50% SiO2 nanocomposite, we have used a versatile route based on the thermal decomposition inside the SiO2 matrix, of some particular precursors, coordination compounds of the involved MII and MIII cations with dicarboxylate ligands. The ligands form in the redox reaction between metal nitrates mixture and 1,3-propanediol at the heating around 140?°C of the gels (tetraethylorthosilicate?Cmetal nitrates?C1,3-propanediol?Cwater). The as-obtained precursors, embedded in silica gels, have been characterized by FT-IR spectrometry and thermal analysis. Both precursors thermally decompose up to 350?°C leading to the formation of the corresponding metal oxides inside the silica matrix. X-ray diffraction of the annealed powders have evidenced the formation of NiFe2O4 starting with 600?°C, and NiCr2O4 starting with 400?°C. This behavior can be explained by the fact that, by thermal decomposition of the Fe(III) carboxylate at 300?°C, the spinelic phase ??-Fe2O3 is formed, which interacts with the NiO, forming the ferrite nuclei. By thermal decomposition of chromium carboxylate, a nonstoichiometric chromium oxide (Cr2O3+x ) is formed. In the range 380?C400?°C, Cr2O3+x turns into Cr2O3 which immediately interacts with NiO leading to the formation of nickel chromites nuclei inside the pores of silica matrix. Both spinels have been obtained as nanocrystalites homogenously dispersed as resulted from XRD and TEM data.  相似文献   

7.
Ferrites of composition M0.2Co0.4Zn0.4Fe2O4 with M = Cu2+, Mn2+ and Ni2+ were prepared by citrate complex method. Later, their composites with silica have also been obtained by a simple route. The citrate complex precursors of multielement ferrites were characterized by FTIR spectroscopy and thermal analysis, been found a similar behavior for the three systems. The thermal treatment (at 400, 600 and 800 °C) of precursors gives, as result, the spinel type cubic ferrite pure when the ions substituted were copper and nickel; when manganese was used an hematite phase was obtained as contaminant at 800 °C. The presence of all ions involved and the particle size was corroborated by EDX analysis and measured from a TEM micrograph, respectively. The magnetic parameters related to magnetic properties, magnetization and coercivity, were different depending of the chemical composition of the ferrite and the thermal treatment temperature, as it was expected. At room temperature, the values obtained were near to those reported for Co-ferrite in bulk. The synthesis route of the composites M0.2Co0.4Zn0.4Fe2O4-SiO2, proposed in this work, gives as result magnetic nanoparticles in an amorphous silica matrix. Their magnetic properties were depending on weight percentage of the magnetic phase in the composite.  相似文献   

8.
The effect of preparation procedure on the anionic composition and structure of hydroxo compounds as precursors of Co-Al catalysts and on their catalytic properties in the Fischer-Tropsch synthesis was studied. The dynamics of changes in the composition and structure of the hydroxide precursors of Co-Al catalysts during thermal treatment and subsequent activation was studied by thermal analysis, IR spectroscopy, XRD analysis, and in situ XRD analysis with the use of synchrotron radiation. It was found that the precursor compounds prepared by deposition-precipitation of cobalt cations on γ- and δ-Al2O3 under urea hydrolysis conditions, which had a hydrotalcite-type structure and contained nitrate, carbonate, and hydroxyl groups, turtned into the oxide compounds Co3 ? x Al x O4 (0 < x < 2) with the spinel structure in the course of thermal treatment in an inert atmosphere. The hydrogen activation of an oxide precursor led to the formation of cobalt metal particles through the intermediate formation of a cobalt(II)-aluminum oxide phase. The catalyst was characterized by high activity and selectivity for C5+ hydrocarbons in the Fischer-Tropsch synthesis.  相似文献   

9.
Functional spinel ferrite fibers are attractive for high-tech applications. The spinel NiFe2O4 fibres have been successfully prepared by the organic gel-thermal decomposition process from raw materials of Ni, Fe nitrate salts and citric acid. The gel spinning performance was a major factor for preparation of uniform gel fibrous precursors. The gel spinnability was related to the citrate-metal complex structure and linear-type structural molecules [(C6H6O7)4NiFe2]n for the gel precursor was possibly formed during the complexation reaction between the citric acid and metal ions at pH 5. The composition, structure of the gel precursors and products derived from thermal decomposition of these precursors were characterized by FTIR, XRD, and SEM. The thermal decomposition process of the gel precursors was investigated by TG-DSC. The prepared spinel NiFe2O4 fibres having grain sizes of 60–70 nm were featured with diameters of about 1 μm, and aspect ratios up to 106 (length/diameter).  相似文献   

10.
《Solid State Sciences》2012,14(8):1092-1099
Nickel-zinc ferrite nanoparticles, Ni1xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0) were prepared by combination of chemical precipitation and spark plasma sintering (SPS) techniques and conventional thermal treatment of the obtained precursors. The phase composition and structural properties of the obtained materials were investigated by X-ray diffraction and Mössbauer spectroscopy and their catalytic activity in methanol decomposition was tested. A strong effect of reaction medium leading to the transformation of ferrites to a complex mixture of different iron containing phases was detected. A tendency of formation of Fe-carbide was found for the samples synthesized by SPS, while predominantly iron-nickel alloys ware registered in TS obtained samples. The catalytic activity and selectivity in methanol decomposition to CO and methane depended on the current phase composition of the obtained ferrites, which was formed by the influence of the reaction medium.  相似文献   

11.
Cation distribution in quenched and furnace-cooled samples of composition NixM1?xFe2O4 (where M is either Mg2+ or Cu2+) has been studied through magnetization measurements. It has been found that cation distribution in these mixed ferrites cannot be predicted by site preference energies. In magnesium-nickel ferrites, cation distribution is controlled by heat treatment up to x = 0.5, beyond which the effect of heat treatment diminishes. Addition of Ni2+ ions in copper ferrite reduces the diffusibility of Cu2+ ions and the distribution tends toward inverse spinel in the high-nickel region.  相似文献   

12.
The cation distribution in the spinel ferrite system NixMn1−γxFe2+γO4 (x=0, 0.25, 0.5, 0.75 and γ=0.137) has been calculated analytically in complete form as a function of thermodynamic parameters. A generalized theoretical framework based on the O’Neill-Navrotsky model and Newton methods was used to solve a multicomponent system for up to 10 cation species. The relationship between the cation distribution and composition is given. The results are shown to agree with the available experimental results.  相似文献   

13.
This work is devoted to a detailed analysis of the interconnection between composition, cation distribution and acidic properties of the surface of nanocrystalline ferrites NixZn1−xFe2O4 obtained by aerosol pyrolysis. The detailed analysis of the Mössbauer spectra allows us to determine the distribution of cations between tetrahedral and octahedral positions in spinel structure. Depending on samples composition, the tetrahedral positions can be occupied by only Fe3+ cations (inverse spinel, x≥0.4) or by Fe3+ and Zn2+ cations (mixed spinel, x=0, 0.2). Increasing the nickel concentration in the ferrite leads to decrease in the number of strong acid centers on the surface. It was found that the decrease in the contribution of strong surface acid sites leads to an increase in sensory sensitivity of the ferrite towards ammonia. For ethanol detection an inverse relationship between sensor signal and surface acidity was observed.  相似文献   

14.
Complex phosphates CsMg1 ? x M x PO4 (M = Mn, Co, Cu, Zn), containing cesium and metals in the oxidation state +2, have been synthesized, and their structure and thermal behavior have been studied. Continuous solid solutions (0 ?? x ?? 1) of the ??-tridymite structure type are formed in the CsMg1 ? x Mn x PO4, CsMg1 ? x Co x PO4, and CsMg1 ? x Zn x PO4 systems, whereas limited solid solutions (0 ?? x ?? 0.4) are formed in the CsMg1 ? x Cu x PO4 system. Based on DTA data, phase transitions have been revealed in the cobalt-, copper-, and zinc-containing phosphates, and the orthorhombic or monoclinic crystal system has been identified. Unit cell parameters of the solid solutions have been calculated. Thermal expansion of the CsMPO4 phosphates has been studied.  相似文献   

15.
16.
The thermal stability of the solid solutions of Fe2Mo1–xTixO4 for x=0.0 to 1.0 in air, had been investigated in the temperature range 303–1173 K using differential thermal analysis and thermogravimetry (DTA and TG). The products obtained by heating the sample in air, at different temperatures, have been characterized by X-ray diffraction and IR-studies. The results show that all the ferrite samples undergo surface oxidation during initial heating. On heating to 823 K, the samples undergo oxidation of the octahedral site cations only and forma cation deficient spinel phase. On further heating in air, the ferrites undergo complete oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
This study considered Zn-substituted cobalt ferrite (ZnxCo1-xFe2O4 (x = 0.0–1.0) (ZCF)) thick films structural, morphological, and electrical properties; and gas sensing performance. The ZCF thick film sensor was screen printed on a glass substrate and tested for different analyte gases, including H2, H2S, CO2, Cl2, NH3, LPG, and C2H5OH. We used X-ray photoelectron spectrometry to investigate composition, chemical state, iron/cobalt or zinc ratio, and cation distribution within Zn-substituted cobalt spinel ferrite tetrahedral and octahedral sites without impurities. FESEM and HR-TEM confirmed grain dimensions between 0.13 and 0.23 μm and porous, nearly spherical to flake-like morphology for the ZCF samples. Sample DC resistivity reduced with increasing temperature, confirming semiconductor nature. Thick film ZCF composition achieved highest the gas response and selectivity to 100 ppm ethanol at room temperature (30 °C). Overall results confirmed that flake-like ZCF sensors could be effective ethanol gas sensors.  相似文献   

18.
Nickel cobalt ferrite, Ni0.5Co0.5Fe2O4, has been prepared by precursor combustion technique from hexa-hydrazine nickel cobalt ferrous succinate precursor. The precursor was characterized by chemical analysis, CHNS analysis, infrared spectroscopy, TG–DTA and mass loss studies. The thermal data show how the precursor decomposes in four steps to give stable ferrite phase. The precursor decomposes autocatalytically once initially ignited, to give the ‘as-prepared’ nano-spinel ferrite. The X-ray diffraction analysis reveals single cubic spinel phase structure. The infrared measurements between 4000 and 350 cm?1 confirmed the intrinsic cation vibrations of the spinel structure. The SEM image clearly shows the nanosized nature of the ferrite. The dielectric constant and loss tangent are found to decrease with increase in frequency which is due to Maxwell–Wagner interfacial polarization. The loss tangent shows a relaxation peak at ~1 kHz. The variation of DC electrical resistivity with temperature indicates semiconductor behaviour. The temperature- and field-dependent magnetization data of ‘as-prepared’ ferrite reveal that the lattice has either a canted or partially misaligned spin structure due to the nanosized nature of the ferrite.  相似文献   

19.
Methods of X-ray phase analysis (XRPA) and differential thermogravimetry in a magnetic field (DTG(M)) are used to investigate the phase composition of Li0.5(1?x)Fe2.5?0.5x Zn x O4 (x Zn?=?0.2, 0.4, and 0.6) ferrite spinels synthesized at a temperature of 700?°C during 120?min by thermal annealing of a reagent mixture in a furnace and heating of the mixture using high-power beam of accelerated electrons with energy of 2.4?MeV. Thermal ferritization of all compositions leads to the formation of phases whose composition is close to simple monoferrites. Lithium?Czinc ferrite phases are formed during annealing under electron irradiation. It is concluded that the rate of controllable diffusion interaction of monoferrite phases significantly increases under conditions of high-power electron irradiation.  相似文献   

20.
The influence of the chemical composition and conditions of heat treatment of MnFe x Co2?x O4 system on its phase composition and catalytic properties in CO oxidation was studied. The formation of substitutional solid solutions of spinel structure was established. The optimum chemical composition of the catalyst, ensuring complete CO conversion at 190°C, was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号