首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of behavior and IC single units in the mouse support theoretical expectations that gaps with ramped trailing markers have reduced detectability compared to equivalent gaps with ramped leading markers. In experiment 1, detection probability and response speeds of humans listening for gaps in broadband noise were investigated by independently varying either leading marker fall-time (FT) or trailing marker rise-time (RT). Gaps with silent duration of 1, 4, or 12 ms were presented 2 s into a 3-s noise burst, with either abrupt marker onsets and offsets or linearly ramped RT/FT of 2, 4, or 8 ms durations. Addition of a nonzero RT or FT to the gap silent period increased detectability and also increased reaction speed on trials with "Yes" response, but there was no difference in detectability or response speeds between RT and FT conditions. Experiment 2 extended this finding to gaps having two, one, or no abrupt marker edges. These findings suggest that human listeners do not make use of abrupt onset or offset information to enhance gap detection, but seem to rely on the effective sound level reduction associated with the gap for detection.  相似文献   

2.
The purpose of these experiments was to determine whether detecting brief decrements in noise level ("gaps") varies with the spectral content and bandwidth of noise in mice as it does in humans. The behavioral effect of gaps was quantified by their inhibiting a subsequent acoustic startle reflex. Gap durations from 1 to 29 ms were presented in five adjacent 1-octave noise bands and one 5-octave band, their range being 2 kHz to 64 kHz. Gaps ended 60 ms before the startle stimulus (experiment 1) or at startle onset (experiment 2). Asymptotic inhibition was greater for higher-frequency 1-octave bands and highest for the 5-octave band in both experiments, but time constants were related to frequency only in experiment 1. For the lowest band (2-4 kHz) neither noise decrements (experiment 1 and 2) nor increments (experiment 3) had any behavioral consequence, but this band was effective when presented as a pulse in quiet (experiment 4). The lowest frequencies in the most effective 1-octave band were one octave above the spectral region where mice have their best absolute thresholds. These effects are similar to those obtained in humans, and reveal a special contribution of wide band, high-frequency stimulation to temporal acuity.  相似文献   

3.
The effect on gap detectability of varying noise fall time (FT) and rise time (RT) of the gap boundary ramps was examined in mice using reflex modification audiometry, measuring inhibition of acoustic startle reflexes by variously shaped gaps just preceding reflex expression. In experiment 1 (n = 12) inhibition increased up to near-asymptotic values with longer FT (0, 1, 2, 3, 5, or 10 ms) and QT (quiet time, 0 to 13 ms), with a 2:1 trade-off between FT and QT. In experiment 2 (n = 24) inhibition increased for any RT above 0 ms (2, 3, 5, or 7 ms) if QT= 1 ms, but diminished with increased RT when QT = 3 or 8 ms. Enhanced detectability for subthreshold gaps by longer ramps results from their extending the apparent gap duration. The negative effect of increased RT for threshold gaps suggests the importance for gap detection of the stronger neural responses to sharp edges at the end of the gap shown previously in the mouse inferior colliculus. These effects are specific to gaps: inhibition for fixed (70-dB SPL) or varied level pulses (30 to 60 dB) was unaffected by varying the ramped edges (experiments 3 and 4, n = 9).  相似文献   

4.
The threshold of a short interaurally phase-inverted probe tone (20 ms, 500 Hz, S pi) was obtained in the presence of a 750-ms noise masker that was switched after 375 ms from interaurally phase-inverted (N pi) to interaurally in-phase (No). As the delay between probe-tone offset and noise phase transition is increased, the threshold decays from the N pi S pi threshold (masking level difference = 0 dB) to the No S pi threshold (masking level difference = 15 dB). The decay in this "binaural" situation is substantially slower than in a comparable "monaural" situation, where the interaural phase of the masker is held constant (N pi), but the level of the masker is reduced by 15 dB. The prolonged decay provides evidence for additional binaural sluggishness associated with "binaural forward masking." In a second experiment, "binaural backward masking" is studied by time reversing the maskers described above. Again, the situation where the phase is switched from No to N pi exhibits a slower transition than the situation with constant interaural phase (N pi) and a 15-dB increase in the level of the masker. The data for the binaural situations are compatible with the results of a related experiment, previously reported by Grantham and Wightman [J. Acoust. Soc. Am. 65, 1509-1517 (1979)] and are well fit by a model that incorporates a double-sided exponential temporal integration window.  相似文献   

5.
A two-alternative forced-choice task was used to measure psychometric functions for the detection of temporal gaps in a 1-kHz, 400-ms sinusoidal signal. The signal always started and finished at a positive-going zero crossing, and the gap duration was varied from 0.5 to 6.0 ms in 0.5-ms steps. The signal level was 80 dB SPL, and a spectrally shaped noise was used to mask splatter associated with the abrupt onset and offset of the signal. Two subjects with normal hearing, two subjects with unilateral cochlear hearing loss, and two subjects with bilateral cochlear hearing loss were tested. The impaired ears had confirmed reductions in frequency selectivity at 1 kHz. For the normal ears, the psychometric functions were nonmonotonic, showing minima for gap durations corresponding to integer multiples of the signal period (n ms, where n is a positive integer) and maxima for durations corresponding to (n - 0.5) ms. For the impaired ears, the psychometric functions showed only small (nonsignificant) nonmonotonicities. Performance overall was slightly worse for the impaired than for the normal ears. The main features of the results could be accounted for using a model consisting of a bandpass filter (the auditory filter), a square-law device, and a sliding temporal integrator. Consistent with the data, the model demonstrates that, although a broader auditory filter has a faster transient response, this does not necessarily lead to improved performance in a gap detection task. The model also indicates that gap thresholds do not provide a direct measure of temporal resolution, since they depend at least partly on intensity resolution.  相似文献   

6.
The detectability of a masked sinusoid increases as its onset approaches the temporal center of a masker. This study was designed to determine whether a similar change in detectability would occur for a silent gap as it was parametrically displaced from the onset of a noise burst. Gap thresholds were obtained for 13 subjects who completed five replications of each condition in 3 to 13 days. Six subjects were inexperienced listeners who ranged in age from 18 to 25 years; seven subjects were highly experienced and ranged in age from 20 to 78 years. The gaps were placed in 150-ms, 6-kHz, low-passed noise bursts presented at an overall level of 75 dB SPL; the bursts were digitally shaped at onset and offset with 10-ms cosine-squared rise-fall envelopes. The gated noise bursts were presented in a continuous, unfiltered, white noise floor attenuated to an overall level of 45 dB SPL. Gap onsets were parametrically delayed from the onset of the noise burst (defined as the first nonzero point on the waveform envelope) by 10, 11, 13, 15, 20, 40, 60, 110, 120, and 130 ms. Results of ANOVAs indicated that the mean gap thresholds were longer when the gaps were proximal to signal onset or offset and shorter when the gaps approached the temporal center of the noise burst. Also, the thresholds of the younger, highly experienced subjects were significantly shorter than those of the younger, inexperienced subjects, especially at placements close to signal onset or offset. The effect of replication (short-term practice) was not significant nor was the interaction between gap placement and replication. Post hoc comparisons indicated that the effect of gap placement resulted from significant decreases in gap detectability when the gap was placed close to stimulus onset and offset.  相似文献   

7.
Two experiments were conducted in conjunction with modeling to evaluate the role of peripheral nonlinearity and neural adaptation in the perception of temporally asymmetric sounds. In both experiments, maskers were broadband noises amplitude modulated with ramped and damped exponential modulators that repeated at 40 Hz. Masking period patterns (MPPs) were constructed by measuring detection threshold of a 5-ms, 1000-Hz tone burst as function of the signal's onset delay. Experiment I showed that varying modulator half-life from 1 to 16 ms led to differences in the damped and the ramped MPPs that were largest at the short half-lives and diminished at the longer half-lives. When masker level was varied (experiment II), the largest difference between ramped and damped MPPs occurred at moderate stimulus levels. Two peripheral auditory models were evaluated, one a simple auditory filter followed by a power-law nonlinearity and another, a model of auditory nerve processing [J. Acoust. Soc. Am. 126, 2390-2412 (2009)] that includes neural adaptation. Neither models predicted differences between the ramped and damped MPPs, providing indirect support that the central auditory system has a role in perceptual temporal asymmetry.  相似文献   

8.
Psychometric functions for gap detection of temporal gaps in wideband noise were measured in a "yes/no" paradigm from normal-hearing young and aged subjects with closely matched audiograms. The effects of noise-burst duration, gap location, and uncertainty of gap location were tested. A typical psychometric function obtained in this study featured a steep slope, which was independent of most experimental conditions as well as age. However, gap thresholds were generally improved with increasing duration of the noise burst for both young and aged subjects. Gap location and uncertainty had no significant effects on the thresholds for the young subjects. For the aged subjects, whenever the gap was sufficiently away from the onset or offset of the noise burst, detectability was robust despite uncertainty about the gap location. Significant differences between young and aged subjects could be observed only when the gap was very close to the signal onset and offset.  相似文献   

9.
Capacities of the goldfish for intensity discrimination were studied using classical respiratory conditioning and a staircase psychophysical procedure. Physiological studies on single saccular (auditory) nerve fibers under similar stimulus conditions helped characterize the dimensions of neural activity used in intensity discrimination. Incremental intensity difference limens (IDLs in dB) for 160-ms increments in continuous noise, 500-ms noise bursts, and 500-ms, 800-Hz tone bursts are 2 to 3 dB, are independent of overall level, and vary with signal duration according to a power function with a slope averaging - 0.33. Noise decrements are relatively poorly detected and the silent gap detection threshold is about 35 ms. The IDLs for increments and decrements in an 800-Hz continuous tone are about 0.13 dB, are independent of duration, and are level dependent. Unlike mammalian auditory nerve fibers, some goldfish saccular fibers show variation in recovery time to tonal increments and decrements, and adaptation to a zero rate. Unit responses to tone increments and decrements show rate effects generally in accord with previous observations on intracellular epsp's in goldfish saccular fibers. Neurophysiological correlates of psychophysical intensity discrimination data suggest the following: (1) noise gap detection may be based on spike rate increments which follow gap offset; (2) detection of increments and decrements in continuous tones may be determined by steep low-pass filtering in peripheral neural channels which enhance the effects of spectral "splatter" toward the lower frequencies; (3) IDLs for pulsed signals of different duration can be predicted from the slopes of rate-intensity functions and spike rate variability in individual auditory nerve fibers; and (4) at different sound pressure levels, different populations of peripheral fibers provide the information used in intensity discrimination.  相似文献   

10.
Iterated rippled noise (IRN) is generated by a cascade of delay and add (the gain after the delay is 1.0) or delay and subtract (the gain is -1.0) operations. The delay and add/subtract operations impart a spectral ripple and a temporal regularity to the noise. The waveform fine structure is different in these two conditions, but the envelope can be extremely similar. Four experiments were used to determine conditions in which the processing of IRN stimuli might be mediated by the waveform fine structure or by the envelope. In experiments 1 and 3 listeners discriminated among three stimuli in a single-interval task: IRN stimuli generated with the delay and add operations (g = 1.0), IRN stimuli generated using the delay and subtract operations (g = -1.0), and a flat-spectrum noise stimulus. In experiment 2 the listeners were presented two IRN stimuli that differed in delay (4 vs 6 ms) and a flat-spectrum noise stimulus that was not an IRN stimulus. In experiments 1 and 2 both the envelope and waveform fine structure contained the spectral ripple and temporal regularity. In experiment 3 only the envelope had this spectral and temporal structure. In all experiments discrimination was determined as a function of high-pass filtering the stimuli, and listeners could discriminate between the two IRN stimuli up to frequency regions as high as 4000-6000 Hz. Listeners could discriminate the IRN stimuli from the flat-spectrum noise stimulus at even higher frequencies (as high as 8000 Hz), but these discriminations did not appear to depend on the pitch of the IRN stimuli. A control experiment (fourth experiment) suggests that IRN discriminations in high-frequency regions are probably not due entirely to low-frequency nonlinear distortion products. The results of the paper imply that pitch processing of IRN stimuli is based on the waveform fine structure.  相似文献   

11.
Detectability of binaurally presented 400- and 800-Hz tonal signals was investigated in an adaptive, two-interval forced-choice experiment. A continuous 3150-Hz low-pass noise masker was presented either diotically (No), interaurally uncorrelated (NU), or interaurally phase-reversed (N pi), at an overall level of 70 dB SPL. Signal duration was either 100 or 1000 ms. The interaural phase difference (IAPD) of the signal was either fixed (0 degree-180 degrees) or time-varying (slightly different frequencies were presented to the two ears). The range of interaural phase variations was selected to yield the same varying interaural temporal differences that would be produced if real auditory targets moved through various arcs in the horizontal plane. In no case was a signal with varying IAPD any more (or less) detectable than would be expected from averaging subjects' performance in the corresponding fixed-IAPD conditions through which the variation occurred. However, in detecting these signals, subjects placed relatively more weight on the temporal central portion than on either the onset or offset. It is proposed that this weighting effect is based on two factors: (1) the signal's 20-ms rise-decay time (i.e., the onset and offset receive less binaural weight because of monaural attenuation); and (2) the very low-pass filtering effected by the binaural system, which results in some minimum time required for it to become "fully engaged." Another finding was that signal detectability became gradually worse as the antiphasic moment in a varying-IAPD signal was moved from the temporal midpoint toward the onset. No evidence was found that a signal's onset and offset were weighted differently in a binaural signal detection task.  相似文献   

12.
This study tested the hypothesis that temporal processing deficits are evident in the pre-senescent (middle-aged) auditory system for listening tasks that involve brief stimuli, across-frequency-channel processing, and/or significant processing loads. A gap duration discrimination (GDD) task was employed that used either fixed-duration gap markers (experiment 1) or random-duration markers (experiment 2). Independent variables included standard gap duration (0, 35, and 250 ms), marker frequency (within- and across-frequency), and task complexity. A total of 18 young and 23 middle-aged listeners with normal hearing participated in the GDD experiments. Middle age was defined operationally as 40-55 years of age. The results indicated that middle-aged listeners performed more poorly than the young listeners in general, and that this deficit was sometimes, but not always, exacerbated by increases in task complexity. A third experiment employed a categorical perception task that measured the gap duration associated with a perceptual boundary. The results from 12 young and 12 middle-aged listeners with normal hearing indicated that the categorical boundary was associated with shorter gaps in the young listeners. The results of these experiments indicate that temporal processing deficits can be observed relatively early in the aging process, and are evident in middle age.  相似文献   

13.
Temporal window shape as a function of frequency and level   总被引:2,自引:0,他引:2  
In an earlier article [Moore et al., J. Acoust. Soc. Am. 83, 1102-1116 (1988)], preliminary work on the temporal-window model of temporal resolution in the auditory system was described. The temporal window is conceived of as a temporal integrator that slides in time and that is implemented as an intensity-weighting function. The shape of the temporal window was estimated by measuring the threshold for a brief sinusoidal signal presented in a temporal gap between two bursts of noise as a function of the duration of the gap and the position of the signal within the gap. In this paper, a much more thorough examination of the effects of level and frequency on the shape of the window is presented, using the same basic technique. Temporal window shapes were measured at four different frequencies (300, 900, 2700, and 8100 Hz) and at three different masker levels covering a 20-dB range at each frequency. The shape of the temporal window was well described by modeling each side as the sum of two rounded-exponential (roex) functions. The equivalent rectangular duration (ERD) of the window decreased from about 13 to 9 ms as the center frequency increased from 300 to 900 Hz, but decreased only slightly, to 7 ms, as the center frequency increased to 8100. The greater ERD at 300 Hz does not seem to be explicable in terms of "ringing" in the auditory filter. The ERD decreased somewhat with increasing level, for example, having a value of about 10 ms at 2700 Hz with a 20-dB masker spectrum level and about 7 ms with a 40-dB masker spectrum level.  相似文献   

14.
Two experiments investigated pitch perception for stimuli where the place of excitation was held constant. Experiment 1 used pulse trains in which the interpulse interval alternated between 4 and 6 ms. In experiment 1a these "4-6" pulse trains were bandpass filtered between 3900 and 5300 Hz and presented acoustically against a noise background to normal listeners. The rate of an isochronous pulse train (in which all the interpulse intervals were equal) was adjusted so that its pitch matched that of the "4-6" stimulus. The pitch matches were distributed unimodally, had a mean of 5.7 ms, and never corresponded to either 4 or to 10 ms (the period of the stimulus). In experiment 1b the pulse trains were presented both acoustically to normal listeners and electrically to users of the LAURA cochlear implant, via a single channel of their device. A forced-choice procedure was used to measure psychometric functions, in which subjects judged whether the 4-6 stimulus was higher or lower in pitch than isochronous pulse trains having periods of 3, 4, 5, 6, or 7 ms. For both groups of listeners, the point of subjective equality corresponded to a period of 5.6 to 5.7 ms. Experiment 1c confirmed that these psychometric functions were monotonic over the range 4-12 ms. In experiment 2, normal listeners adjusted the rate of an isochronous filtered pulse train to match the pitch of mixtures of pulse trains having rates of F1 and F2 Hz, passed through the same bandpass filter (3900-5400 Hz). The ratio F2/F1 was 1.29 and F1 was either 70, 92, 109, or 124 Hz. Matches were always close to F2 Hz. It is concluded that the results of both experiments are inconsistent with models of pitch perception which rely on higher-order intervals. Together with those of other published data on purely temporal pitch perception, the data are consistent with a model in which only first-order interpulse intervals contribute to pitch, and in which, over the range 0-12 ms, longer intervals receive higher weights than short intervals.  相似文献   

15.
In tone-on-tone masking, thresholds often decrease as the onset of the signal is delayed relative to the onset of the masker, especially when the frequency of the masker is higher than the frequency of the signal. This temporal effect was studied here by using a tonal "precursor," whose offset preceded the onset of the tonal masker (and signal). Under the right conditions, the precursor can reduce or eliminate the temporal effect by decreasing the threshold for a signal at masker onset, presumably for the same reason that the threshold decreases as a signal is delayed relative to the onset of a masker. In the present study, the frequency of the signal was 4000 Hz, and the frequency of the masker and precursor was typically 5000 Hz. In experiment 1, the precursor was presented to the ear receiving the masker and signal (ipsilateral precursor); in experiment 2, it was presented to the opposite ear (contralateral precursor). The results from experiment 1 can be summarized as follows: the ipsilateral precursor (a) reaches its maximum effectiveness (in reducing the temporal effect) for precursor durations of 200-400 ms; (b) is ineffective once the delay between its offset and the onset of the masker reaches about 50-100 ms; (c) is generally ineffective when its level is 10 or more dB lower than the level of the masker, but is effective when its level is equal to or greater than the level of the masker; and (d) becomes progressively less effective as its frequency is either increased or decreased relative to the frequency of the masker. The results from experiment 2 can be summarized simply by stating that the contralateral precursor is ineffective in reducing the temporal effect. These results suggest that the effect of the precursor may be mediated peripherally.  相似文献   

16.
Although numerous studies have investigated temporal integration of the acoustic-reflex threshold (ART), research is lacking on the effect of age on temporal integration of the ART. Therefore the effect of age on temporal integration of the ART was investigated for a broad-band noise (BBN) activator. Subjects consisted of two groups of adults with normal-hearing sensitivity: one group of 20 young adults (ten males and ten females, ages 18-29 years, with a mean age of 24 years) and one group of 20 older adults (ten males and ten females, ages 59-75 years, with a mean age of 67.5 years). Activating stimulus durations were 12, 25, 50, 100, 200, 300, 500, and 1000 ms. Significant main effects for duration and age were obtained. That is, as the duration increased, the acoustic reflex threshold for BBN decreased. The interactions of duration x age group and duration x hearing level were not significant. The result of pair-wise analysis indicated statistically significant differences between the two age groups at durations of 20 ms and longer. The observed age effect on temporal integration of the ART for the BBN activator is interpreted in relation to senescent changes in the auditory system.  相似文献   

17.
The contribution of temporal asynchrony, spatial separation, and frequency separation to the cross-spectral fusion of temporally contiguous brief narrow-band noise bursts was studied using the Rhythmic Masking Release paradigm (RMR). RMR involves the discrimination of one of two possible rhythms, despite perceptual masking of the rhythm by an irregular sequence of sounds identical to the rhythmic bursts, interleaved among them. The release of the rhythm from masking can be induced by causing the fusion of the irregular interfering sounds with concurrent "flanking" sounds situated in different frequency regions. The accuracy and the rated clarity of the identified rhythm in a 2-AFC procedure were employed to estimate the degree of fusion of the interferring sounds with flanking sounds. The results suggest that while synchrony fully fuses short-duration noise bursts across frequency and across space (i.e., across ears and loudspeakers), an asynchrony of 20-40 ms produces no fusion. Intermediate asynchronies of 10-20 ms produce partial fusion, where the presence of other cues is critical for unambiguous grouping. Though frequency and spatial separation reduced fusion, neither of these manipulations was sufficient to abolish it. For the parameters varied in this study, stimulus onset asynchrony was the dominant cue determining fusion, but there were additive effects of the other cues. Temporal synchrony appears to be critical in determining whether brief sounds with abrupt onsets and offsets are heard as one event or more than one.  相似文献   

18.
Temporal resolution was examined in normal-hearing subjects using a broadband noise and five narrow-band noises with center frequencies (fc) spaced 2 kHz apart between 6 and 14 kHz. Bandwidths of the narrow-band signals were equal to 0.16 fc, and broadband noise maskers with spectral notches were used to restrict the listening bands. Subjects used a Békésy procedure to track the minimum signal level required to keep a periodic temporal gap of fixed duration at threshold. Gap durations from 25 ms to the smallest trackable value were tested with each signal to generate performance curves, which showed the relationship between gap resolution and signal level in the low-to-moderate intensity range. Results showed that gap resolution improved progressively with increased signal level to about 35 dB SL, where minimum gap thresholds of about 3 ms were observed for all signals. These results, when combined with previous low-frequency data, indicate that gap threshold decreases systematically with increased signal frequency to about 5 kHz, and asymptotes at 2-3 ms for higher frequencies. In the context of functional models, the frequency effect is qualitatively consistent with the notion that both the auditory filter and a sensory integrator operate in series to govern temporal resolution in audition.  相似文献   

19.
利用一个小的环向涡旋脉冲电场(4.4V/m,0.45ms)成功地将HT-6M托卡马克等离子体电流从第一平顶(55kA)提升到60kA的第二平顶。其电流上升率大于12MA/s,电流上升时间远小于经典趋肤时间,实验中观察到了标志等离子体约束改善的明显物理现象。等离子体电流提升后,粒子约束时间提高了2.1倍,能量约束时间提高了1.6倍。 关键词:  相似文献   

20.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号