首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Rapid diffusion of CH4/H2 mixtures in single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Equilibrium molecular dynamics (EMD) are used to examine the self-diffusion and macroscopic diffusion of CH4/H2 mixtures adsorbed inside a (10,10) single-walled carbon nanotube. EMD can be used to determine the macroscopic diffusion coefficients of adsorbed mixtures by evaluating the matrix of Onsager transport coefficients. Earlier studies have indicated the diffusion of light gases adsorbed as single components in carbon nanotubes is extremely rapid compared to that in other known nanoporous materials. The results presented here indicate that extremely rapid diffusion can also occur for mixtures of adsorbed molecules. The rapid diffusion of adsorbed molecules and the strong coupling between the fluxes of the adsorbed species in a mixture have interesting implications for uses of carbon nanotubes in membrane-based applications.  相似文献   

2.
The potential energies of interaction between carbon nanotubes and internal fullerenes of spherical and ellipsoidal shape, as well as between nanotubes in multi-walled nanotubes were calculated using the Lennard–Jones (LJ) potential for carbon–carbon interactions. The optimum and maximum size of internal fullerenes and multi-walled nanotubes are determined as a function of the external nanotube radius. It was found that at the potential energy minimum, the van der Waals distance is close to that in graphite for all studied cases. The calculated results agree with available experimental observations and could be used as a guide for future experiments.  相似文献   

3.
Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exchange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about 1 bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.  相似文献   

4.
Direct measurement of ion diffusion in aligned, densified single-walled carbon nanotube electrodes showed that the diffusion coefficient for transport of ions (KSCN in acetonitrile) parallel to the alignment direction of the nanotubes was close to the theoretical limit of perfectly straight pores, achieving a value 20 times larger than that of activated carbon electrodes (1 × 10(-5) vs 5 × 10(-7) cm(2)/s). In contrast, the diffusion coefficient for ion transport perpendicular to the alignment direction was an order of magnitude smaller (8 × 10(-7) cm(2)/s). As an example of the ramifications of this anisotropic diffusion phenomenon, the difference in performance of the aligned carbon nanotubes as electrochemical-capacitor electrodes was evaluated. At low discharge rates, the performances of the two orientations were identical, but as the discharge rate was increased, a more rapid decline in capacitance was observed for the perpendicular orientation (66 vs 14% decline in capacitance when the discharge current was increased from 0.01 to 1 A/g). Furthermore, the maximum power rating of the perpendicular electrode was lower than that of the parallel electrode (1.85 vs 3 kW/kg during operation at 1 V).  相似文献   

5.
The interactions between oxygen and nitrogen atoms with single-walled carbon nanotubes were investigated for nanotubes with two different geometrical configurations using first-principle calculations within the framework of the density functional theory. We introduced a new type of toxic gas sensor that can detect the presence of H2, Cl2, CO, and NO molecules. We also demonstrated that the sensitivity of this device can be controlled by the concentration of the dopants on the surface of the nanotube. In addition, the transport properties of the doped nanotube were studied for different concentrations of oxygen or nitrogen atoms that were randomly distributed on the surface of the single-walled carbon nanotube. We observed that small amounts of dopants can modify the electronic and transport properties of the nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with either oxygen or nitrogen atoms.  相似文献   

6.
Oxidized nitrogen-doped multiwall carbon nanotubes (ox-N-MWCNTs), oxidized multiwall carbon nanotubes (ox-MWCNTs), and oxidized single-wall carbon nanotubes (ox-SWCNTs) were evaluated via batch adsorption kinetic experiments to determine the effect of nanotube morphology on the adsorption rate of cadmium. The nanotubes were characterized by HRTEM, XRD and Raman spectroscopy. Cadmium adsorption isotherms were determined at pH 6. Analyses of the kinetic data with an external mass transport model and an intraparticle diffusion model considered two cases: (1) single nanotubes suspended in aqueous solution and (2) agglomerates of nanotubes suspended in aqueous solution. The intraparticle diffusion model produced the best fit to the experimental data. However, only the diffusivity coefficients for single nanotubes suspended in solution were similar to literature values: about 4×10(-9), 1×10(-9) and 2.4×10(-11) cm(2)/s for ox-N-MWCNTs, ox-MWCNTs and ox-SWCNTs, respectively. The morphology of the various carbon nanotubes might determine cadmium diffusivity. The high amount of sidewall pores observed in the single-walled carbon nanotubes could limit cadmium diffusion and account for the slow diffusion rate of 180 min. Conversely, the short length, small surface area and bamboo-type morphology observed with nitrogen-doped multiwall carbon nanotubes may account for the relatively fast adsorption rate of 15 min as this morphology prevents cadmium diffusion through the internal tubular space of these nanotubes.  相似文献   

7.
We study the vibrational energy diffusion in single-walled carbon nanotubes by using the molecular-dynamics method. It is found that energy transports ballistically at low temperature and superdiffusively at room temperature. The velocity of energy transport along the axis in carbon nanotube at room temperature is about 0.10 A/fs. It is also found that energy transport in carbon nanotube is different from that one in one-dimensional carbon lattice with the same interaction potential.  相似文献   

8.
9.
Fourier transform infrared spectroscopy is used to study CO adsorption in single-walled carbon nanotubes. Evidence for adsorption in endohedral and groove/external surface sites is presented through displacement studies involving both CO and CO2. Blue-shifted CO stretching frequencies also indicate that CO hydrogen bonds to hydroxyl functionalities created on the nanotubes by acid purification steps. N2 surface area measurements are used to further understand the porosity of the nanotube samples and to help explain the spectroscopic results.  相似文献   

10.
Understanding the behavior of radioactive nuclide elements in different environmental conditions is an active area of research. In this work, we have investigated the possible interaction mechanism between carbon nanotubes and uranyl using density functional theory. It is shown that functionalized carbon nanotubes can be used to bind uranyl ions much more efficiently as compared to their unfunctionalized counterpart. The uranyl binding energies are sensitive to the nature of the functional groups rather than the carbon nanotube itself. The binding takes place preferably at the functionalized sites, although pH could determine the strength of uranyl binding. Our predicted results correlate well with the recent experimental uranyl sorption studies on carbon nanotubes. These finding are new and can open up a new era for actinide speciation and separation chemistry using carbon nanotubes.  相似文献   

11.
Motivated by the central importance of charge-induced dimensional changes for carbon nanotube electromechanical actuators, we here predict changes in nanotube length and diameter as a function of charge injection for armchair and zigzag nanotubes having different diameters. Density functional theory with periodic boundary conditions is used, which we show provides results consistent with experimental observations for intercalated graphites. Strain-versus-charge relationships are predicted from dimensional changes calculated with a uniform background charge ("jellium") for representing the counterions. These jellium calculations are consistent with presented calculations that include specific counterions for intercalated graphite, showing that hybridization between the ions and the graphite sheets is unimportant. The charge-strain relationships calculated with the jellium approximation for graphite and isolated single-walled nanotubes are asymmetric with respect to the sign of charge transfer. The dependence of nanotube strain on charge approaches that for a graphite sheet for intermediate-sized metallic nanotubes and for larger diameter semiconducting nanotubes. However, the strain-charge curves strongly depend on nanotube type when the nanotube diameter is small. This reflects both the dependence of the frontier orbitals for the semiconducting nanotubes on the nanotube type and the pi-sigma mixing when the nanotube diameter is small.  相似文献   

12.
First-principles calculations within the density functional theory have been performed in order to investigate ozone adsorption on carbon nanotubes. Particular emphasis is placed on the effects of Stone-Wales-like defects on the structural and electronic properties of (i) ideal tubes and (ii) tubes in the presence of ozone. Our results show that structural deformations induced on the pure carbon nanotubes by Stone-Wales defects are similar, as expected, to those induced on graphite; for the (10,0) tube, the semiconducting character is kept, though with a small reduction of the band gap. As for the ozone adsorption, the process on ideal nanotubes is most likely physisorption, though slightly stronger if compared to other previously studied molecules and consistent with the strong oxydizing nature of O(3). However, when ozone adsorbs on Stone-Wales defects, a strong chemisorption occurs, leading to relevant structural relaxations and to the formation of a CO covalent bond; this is consistent with experimental observations of CO functional groups, as well as of the liberation of CO gas phase and of the formation of C vacancies, thus explaining the consumption of the nanotube film upon ozone exposure.  相似文献   

13.
Here, we show that residual contaminants in purified single-wall carbon nanotube bundles may be responsible for the reported sensitivity of the electronic and transport properties to oxygen. Removal of these contaminants makes the electronic spectra insensitive to O(2), CO, H(2)O, and N(2), while a strong sensitivity to NO(2), SO(2), and NH(3) is observed, confirming the possible application of single-wall nanotubes as powerful sensors capable of measuring environmentally significant levels of toxic gases.  相似文献   

14.
We have studied nickel, gold, and ferritin coatings on catalytically grown multiwall carbon nanotubes as well as the generation of secondary nanotubes by resubmitting the decorated nanotubes to the chemical vapor deposition process. Nickel layers sputtered on nanotubes show a stronger interaction with the nanotube walls than gold coatings. At ambient temperature this results in a metal film that is more homogeneous for Ni than for Au. Surface mass transport at elevated temperatures leads to a transformation of the coating to nanoscale clusters on the nanotube surface. The resulting Au clusters are spherelike with a very small contact area with the nanotube whereas the Ni clusters are stretched along the tube axis and have a large contact area. Secondary nanotubes were established by growing nanotubes directly on the walls of primary nanotubes. Thin Ni layers or ferritin served as catalysts. We compared the field emission properties of samples with and without secondary nanotubes. The presence of secondary nanotubes enhances the field emission substantially.  相似文献   

15.
In the present study, we report the chemical vapor deposition (CVD) of nitrogen-doped (N-doped) aligned carbon nanotubes on a silicon (Si) substrate using ferrocene (Fe(C5H5)2) as catalyst and acetonitrile (CH3CN) as the carbon source. The effect of experimental conditions such as temperature, gaseous environment, and substrates on the structure and morphology of N-doped carbon nanotubes arrays is reported. From XPS and EELS data, it was found that the nitrogen content of the nanotubes could be determined over a wide range, from 1.9% to 12%, by adding the addition of hydrogen (H2) to the reaction system. It was also shown by SEM that N-doped carbon nanotube arrays could be produced on Si and SiO2 substrates at suitable temperatures, although at different growth rates. Using these concentrations, it was possible to produce three-dimensional (3D) carbon nanotubes architectures on predetermined Si/SiO2 patterns. The mechanism underlying the effect of nitrogen containing carbon sources on nanotube formation was explored using X-ray photoelectron spectroscopy (XPS).  相似文献   

16.
We report transverse polarizabilities of coaxial carbon nanotubes using first principles density functional theory. These results demonstrate a shielding of the inner nanotube from electric fields by the outer nanotube. This study has implications for nanoelectronics, specifically for the possibility of using coaxial nanotubes as nanoelectrical wires. Shielding is predicted to be on the order of 95% by high-level polarizability calculations. This shielding occurs regardless of whether the outer nanotube is metallic or semiconducting. In addition, a series of calculations on coaxial nanotubes where the inner nanotube is not centered show that the shielding still occurs with approximately the same magnitude. These calculations therefore indicate that it would be possible to use a coaxial carbon nanotube as a shielded nanowire.  相似文献   

17.
Ion selectivity using membranes comprising functionalized carbon nanotubes   总被引:1,自引:0,他引:1  
In this paper, we use applied mathematical modelling to investigate the transportation of ions inside functionalized carbon nanotubes, and in particular the transport of sodium and chloride ions. This problem is important for future ion transport and detection, and also arises in ion diffusion inside complex biological channels. Some important future applications of the system for a solvent are ultra-sensitive biosensors and electrolytes for alkaline fuel cells. We model the interactions between the ions and the nanotube by the Lennard-Jones potential and the interactions between the ions and the functional group by the Coulomb potential, while the atomic interactions between the ions is modeled by both the Lennard-Jones and Coulomb potentials. We further assume that the carbon atoms, the charge of the functional group, and the ions are all evenly distributed on the surface of the nanotube, the entry of the nanotube and the envisaged ionic surface, respectively, so that we may use the continuous approximation to calculate the corresponding potential energies. For nanotubes located in salt water, the molecular effects arising from the bulk solution can be extracted from MD simulation studies. Assuming that the solvent is absent, we first determine the acceptance radii for the sodium or chloride ion entering the nanotube, both with and without a functional group, and we then determine the equilibrium positions of two identical ions inside the nanotube. Finally, the transportation time of an intruding ion through the nanotube is deduced from the total axial force. In the presence of a solvent, the molecular effects arising from the bulk solution are examined and we establish that the presence of a solvent stabilizes the selectivity of the ions.  相似文献   

18.
In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.  相似文献   

19.
Multiwall carbon nanotubes (MWNTs) were synthesized via the decomposition of CCl4 in supercritical CO2 at 175 degrees C and 27.6 MPa using an iron-encapsulated dendrimer as a growth catalyst. The average diameter of resultant nanotubes was 20-25 nm, obtained after a 24-h reaction time. Our conditions represent the first application for CX4 precursors, as well as the lowest-reported temperature regime for carbon nanotube growth, allowing the use of other temperature-sensitive catalytic substrates.  相似文献   

20.
In this Article, we describe a carbon nanotube formation model in which sp2 carbon hemispheres form the embryonic caps from which a nanotube can grow. This requirement leads to a single wall carbon nanotube formation window concomitant with our systematic experimental findings, which show upper and lower diameter limits. Further, the successful formation of a nucleation cap (hemisphere) is governed by catalyst particle volume to surface area considerations. Single wall carbon nanotubes are only obtained when both the nanotube formation window and the precipitating catalyst size distribution cross over. The extent to which these two windows overlap establishes the mean diameter and diameter distribution of the obtained single wall carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号