首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel compounds of the formulae [{Cu(phen)2}2(μ-C2O4)][Cu(phen)2(μ-C2O4)NbO(C2O4)2]2 · 8H2O (1) and [{Cu(bpy)2}2(μ-C2O4)][Cu(bpy)2(μ-C2O4)NbO(C2O4)2]2 · 0.5bpy · 7H2O (2) (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by single crystal X-ray diffraction, IR spectroscopy and magnetic susceptibility measurements. The molecular structure of both 1 and 2 consists of a discrete CuIICuII oxalate-bridged dinuclear [{Cu(L)2}2(μ-C2O4)]2+ cation (A unit) and two CuIINbV oxalate-bridged dinuclear [Cu(L)2(μ-C2O4)NbO(C2O4)2] anions (B units) (L = phen, bpy). In 1 a crystallographic inversion centre is located in the middle of the oxalate bridge of the A unit, whereas in 2 an analogous inversion centre is missing. In the A units the copper(II) atoms adopt a tetragonally elongated octahedral coordination with the equatorial planes being perpendicular to the mean planes of the oxalate bridge and parallel to each other. In both structures, similar one-dimensional motifs are generated through the ligand stacking interactions, with a difference that one free bipyridine molecule, present in 2, intercalates into one of the motifs. It is shown that the phenanthroline ligand, due to its ability of stacking through the central aromatic ring, causes longer intermolecular Cu?Cu distances than the bipyridine ligand. The magnetic susceptibility measurements (1.8–290 K) show the ferromagnetic exchange interaction between the copper(II) atoms in the A units of both compounds, with J = +5.9 cm−1 and +7.9 cm−1 for 1 and 2, respectively (J – the exchange parameter in the isotropic spin Hamiltonian HINT = −JS1 · S2).  相似文献   

2.
Reactions of cycloaurated gold(III) dichloride complexes, with 1,2-C6H4(NHCOMe)2 and silver(I) oxide, or with C2H4(NHSO2Tol)2 (Tol = p-tolyl) or 1,2-C6H4(NHSO2Tol)2 and trimethylamine, give a series of new auracyclic complexes containing the Au–NR–CH2CH2–NR (R = SO2Tol) and Au–NR–C6H4–NR (R = COMe or SO2Tol) five-membered ring systems. An X-ray structure determination on (2-bp)Au{N(COMe)C6H4N(COMe)} (2-bp = cycloaurated 2-benzylpyridine) shows the presence of puckered metallacyclic rings, with both acetyl substituents positioned below the Au(III) coordination plane. The complex (2-bp)Au{N(COMe)C6H4N(COMe)} undergoes ring cleavage in the presence of halide and water, to give the complex (2-bp)Au{N(COMe)C6H4NH(COMe)}Cl, which was characterised crystallographically, and shown to contain a monodentate amidate ligand. Biological activity studies of the new auracyclic complexes are also reported, against P388 murine leukaemia cells and a range of bacteria and fungi, with a number of complexes showing high activity.  相似文献   

3.
A DFT study was carried out to investigate the reaction mechanisms of a model μ-benzoquinone diruthenium complex {CpRu(μ-H)}2(μ-η22-C6H4O2), derived from the experimental compound {Cp*Ru(μ-H)}2(μ-η22-C6H3RO2) (R = H or R = Me, Cp* = η5-C5Me5), with acetylene both in aprotic and protic solvents. Results of calculations show that the influence of the solvent methanol on the reaction is mainly on the step of acetylene coordination. Enhanced hydrogen bonding is the reason for acceleration of the reaction in protic solvent, which is supported by NBO charge analysis.  相似文献   

4.
The interaction of palladium(+1) cluster Pd4(μ-CO)4(μ-OAc)4 with saturated and unsaturated carboxylic acids was studied. It was found, that the substitution of acetates groups on others carboxylates leads to the clusters with different nuclearity. Palladium(+1) carbonyl carboxylate complexes of composition [Pd(μ-CO)(μ-OCOR)]n, where R = CF3, CCl3, CH2Cl, MeCH = CMe, Me, Pri, Bu, Bui, Butert, n-C5H11 and n = 4 or 6 were synthesized. According to X-ray data all clusters possess cyclic planar metal cores with alternate pairs of μ-carbonyl and μ-carboxylate ligands. The presence of bulky alkyl fragments in the carboxylate ligand increases the nuclearity of the cluster compared to that of the starting palladium(+1) carbonyl acetate of composition Pd4(μ-CO)4(μ-OAc)4 due, apparently, to steric hindrance.  相似文献   

5.
Two new mixed-ligand coordination polymers, {[Co(μ1,3-sq)(H2O)2(2-Meim)2]·2(2-Meim)}n (1) and [Cd(μ1,3-sq)(H2O)2(4(5)-Meim)2]n (2), (sq = squarate, 2-Meim = 2-methylimidazole, 4(5)-Meim = 5-methylimidazole) have been synthesized and structurally characterized by X-ray crystallography. The spectral (IR and UV–Vis) and thermal analyses are also reported. The Co(II) and Cd(II) ions are distorted octahedrally coordinated by four oxygen atoms of two O1–O3-bridging squarate ligands and two trans-aqua ligands, and by two nitrogen atoms of the trans-imidazole (2-Meim or 4(5)-Meim) ligands. The structures of 1 and 2 consist of one-dimensional chains of μ-1,3-squarato bridged metal(II) complex units. These chains are held together by hydrogen bonding interactions, forming three-dimensional framework.  相似文献   

6.
The readily prepared [Re2(CO)6(μ-S2NC7H4)2] (1) reacts with Group 8 trimetallic carbonyl clusters to yield new mixed-metal tri- and tetranuclear clusters. With [Os3(CO)10(NCMe)2] at 80 °C the tetranuclear mixed-metal cluster [Os3Re(CO)133-C7H4NS2)] (2) is the only isolated product. With Ru3(CO)12 products are dependent upon the reaction temperature. At 80 °C, a mixture of tetranuclear mixed-metal [Ru3Re(CO)133-C7H4NS2)] (5) and the triruthenium complex [Ru3(CO)9(μ-H)(μ3-C7H4NS2)] (4) results, while at 110 °C a second tetranuclear mixed-metal cluster, [Re2Ru2(CO)124-S)(μ-C7H4NS)(μ-C7H4NS2)] (3), resulting from carbon-sulfur bond scission, is the major product. Reaction of 1 With Fe3(CO)12 at 80 °C furnishes the trinuclear mixed-metal cluster [Fe2Re(CO)8(μ-CO)23-C7H4NS2)] (6). The reactivity of 6 has been probed with the aim of identifying any metal-based selectivity for carbonyl substitution. Addition of PPh3 in presence of Me3NO at 25 °C gives both the mono- and bis(phosphine)-substituted derivatives [Os3Re(CO)12(PPh3)(μ3-C7H4NS2)] (7) and [Os3Re(CO)11(PPh3)23-C7H4NS2)] (8). In 7 the PPh3 ligand occupies an axial site on wingtip osmium, while in 8 one PPh3 ligand is equatorially coordinated to wingtip osmium and the other is bonded to a hinge osmium. New complexes have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction studies.  相似文献   

7.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

8.
Binuclear Rh(II) compounds [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](CH3COO)2 (1) (dbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine), [Rh2(μ-OOCCH3)2(dbbpy)2(H2O)2](BF4)2·H2O·CH3CN (2), [Rh2(CH3COO)2(C18H24N2)2(CH3CN)2](BF4)2·4CH3CN (3) and {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) have been synthesized and characterized with spectroscopic methods. Structure of complex 3 has been determined using X-ray crystallography. Rhodium atoms in compound 3 have distorted octahedral coordination with O and N atoms in equatorial positions and Rh atom and CH3CN molecule in axial coordination sites. Reduction of rhodium(II) compounds with aqueous 2-propanol leads to the formation of polymetallic compound {[Rh2(μ-OOCCH3)2(dbbpy)2][BF4]}n (4) containing [Rh2]3+ core. Compound 4 shows strong antiferromagnetic properties, μ = 0.18–1.73 M.B. in the range 1.8–300 K, J = −597 cm−1. Electrochemistry of compounds 3 and 4 in CH3CN has been investigated. Compound 4 exhibits a poorly reversible oxidation system at E1/2 = −0.92 V (ΔEp = 0.19 V) and in solution in DMF is slowly oxidized to 3 even in total absence of oxygen. Complex 3 is irreversibly oxidized to Rh(III) compound at Epa = 1.48 V and irreversibly reduced at Epc = −1.02 V to lead to the unstable polynuclear complex 4 in CH3CN.  相似文献   

9.
The reaction between uranyl nitrate hexahydrate and phenolic ligand precursor [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) · HCl], H3L1 · HCl, leads to a uranyl complex [UO2(H2L1)2] (1a) and [UO2(H2L1)2] · 2CH3CN (1b). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-4-amino-1-butanol)H3L2 · HCl], H3L2 · HCl, yields a uranyl complex with a formula [UO2(H2L2)2] · CH3CN (2). The ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-5-amino-1-pentanol) · HCl], H3L3 · HCl, produces a uranyl complex with a formula [UO2(H2L3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-5-amino-1-pentanol) · HCl], H3L4 · HCl, leads to a uranyl complex with a formula [UO2(H2L4)2] · 2CH3CN (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol) · HCl], H3L5 · HCl, leads to a uranyl complex with a formula [UO2(H2L5)2] · 4toluene (5). The complexes 15 are obtained using a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine). The molecular structures of 1a, 1b, 3, 4 and 5 were verified by X-ray crystallography. All complexes are neutral zwitterions and have similar centrosymmetric, mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands in an equatorial plane. In uranyl ion extraction studies from water to dichloromethane with ligands H3L1 · HCl–H3L5 · HCl, ligands H3L1 · HCl, H3L4 · HCl and H3L5 · HCl are the most effective ones.  相似文献   

10.
This paper represents the hydrothermal synthesis of new isomorphous lanthanide–vanadium complexes with one-dimensional coordination polymers: [Pr2(VO2)2(dipic)4(H2O)9] · nH2O with dipic = pyridine-2,6-dicarboxylic acid and n = 7.75. The structure determination shows a unique one-dimensional structure in which three types of chains run along the c-axis: the chain of positively charged praseodymium complexes bridged by a dipic ligand ([Pr(dipic)(H2O)5]+), the chain of negatively charged, stacked vanadium complexes ([VO2(dipic)]), and the chain of neutral praseodymium complexes with a bridged dipic ligand and a coordinating dipic ligand ([Pr(dipic)[VO2(dipic)](H2O)4]). Such one-dimensional chains provide open channels which can accommodate water molecules. Not only accommodated water molecules but also ones coordinated to praseodymium ions were easily removed and absorbed upon heating at 200 °C and exposure of humidity at room temperature, respectively.  相似文献   

11.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with trans-1,2-bis(2-pyridyl)ethene (C12H10N2) at room temperature in tetrahydrofuran affords the compounds [Re2(μ:η3-C12H10N2)(CO)8] (1) and the oxidative addition product [Re2(μ-H)(μ:η3-C12H9N2)(CO)7] (2). When the reaction is carried out at temperatures of refluxing tetrahydrofuran, besides compounds 1 and 2, the oxidative addition product [Re2(μ-H)(μ:η4-C12H9N2)(CO)6] (3), the insertion product [Re2(μ:η4-C12H10N2)(CO)8] (4) and [Re2(μ:η6-C24H18N4)(CO)6] (5) are obtained. Compound 5 contains the organic ligand rtct-tetrakis(2-pyridyl)cyclobutandiyl which is derived from a [2 + 2] cycloaddition of 1,2-bis(2-pyridyl)ethene mediated by its coordination to the bimetallic framework. The molecular structures of 1, 2, 4 and 5 were confirmed by X-ray crystallographic studies.  相似文献   

12.
Eight chromium(III) complexes of tetradentate Schiff bases have been prepared in situ by condensing of a substituted salicylaldehyde compound with ethylenediamine. These were characterized by elemental analysis, m.p., IR, molar conductivity, magnetic moment measurements, and electronic spectra. The free ligands were also characterized by 1H and 13C NMR spectra. The 13C NMR spectra are discussed in terms of possible substituent effects. The IR and electronic spectra of the free ligand and the complexes are compared and discussed. The electrospray ionization (ESI) mass spectra of four free ligands and their complexes were measured. The deconvolution of the visible spectra of the complexes, C2v symmetry, in DMSO yields three peaks at ca. 15 600–17 600, 18 400–20 400 and 20 000–23 100, and are assigned to the three d–d transitions, 4B1g → 4Eg(4T2g); 4B1g → 4B2g(4T2g); 4B1g → 4Eg(4T1g), respectively. The complexes showed magnetic moment in the range of 3.5–4.2 BM which corresponds to three unpaired electrons.  相似文献   

13.
The solid state reaction of [Ca(H2O)41-4-nba)(η2-4-nba)] 1 (4-nba = 4-nitrobenzoate) with 2-methylimidazole (L2) at 100 °C results in the formation of a Ca(II) coordination polymer [Ca(H2O)(L2)(4-nba)2]n2. Compound 2 was characterized by elemental analysis, spectral and thermal methods, and its structure determined. The coordination polymer 2 crystallizes in the centrosymmetric monoclinic space group P21/n with all atoms situated in general positions and its structure consists of a central Ca(II), a monodentate 2-methylimidazole, a bridging water ligand (μ2-H2O), a bidentate bridging (μ211) 4-nba ligand and a monoatomic bridging (μ22) 4-nba ligand. Each seven-fold coordinated Ca(II) in the title compound is bonded to a nitrogen atom of a terminal 2-methylimidazole (L2) ligand, two symmetry related water molecules and four symmetry related 4-nba ligands, resulting in a distorted pentagonal bipyramidal {CaO6N} polyhedron. Due to the bridging nature of the aqua and 4-nba ligands [(2-methylimidazole)calcium(II)] units in 2 are linked into a one-dimensional coordination polymer consisting of three chains, all of which propagate along b-axis. In the triple chain coordination polymer a Ca···Ca separation of 3.8432(3) Å is observed between neighbouring Ca(II) ions. The oxygen atoms of the carboxylate and nitro functionalities of the 4-nba ligand and the coordinated water are involved in O–H···O, N–H···O and C–H···O interactions. A comparative study of nine alkaline-earth 4-nitrobenzoate compounds is described.  相似文献   

14.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

15.
Treatment of [RuCl26-C6H6)]x with bidentate phosphine ligand BDNA [1,8-bis(diphenylphosphinomethyl)naphthalene] in methanol at room temperature gave η6-benzene-ruthenium complexes Ru2Cl46-C6H6)2(μ-BDNA) (1). Complex 1 further reacted with AgBF4 to form complex [Ru2Cl2(μ-Cl)(η6-C6H6)2(μ-BDNA)](BF4) (2). [RuCl26-C6H6)]x reacted with BDNA in refluxing methanol and then the reaction solution was treated with AgBF4 to generate complex [Ru2Cl26-C6H6)2(μ-BDNA)2](BF4)2 (3). Their compositions and structures had been determined by elemental analyses, NMR spectra and single crystal X-ray diffractions. X-ray diffraction showed that complex 1 belonged to monoclinic crystal system, P21/c space group with Z = 4, a = 12.810 Å, b = 21.507 Å, c = 18.471 Å, β = 107.95°; complex 2 belonged monoclinic crystal system, P21/n space group with Z = 4, a = 14.498 Å, b = 15.644 Å, c = 20.788 Å, β = 103.404°, and complex 3 belonged to monoclinic crystal system, P21/n space group with Z = 2, a = 13.732 Å, b = 14.351 Å, c = 19.733 Å, β = 94.82°.  相似文献   

16.
Compound [Fe2(μ-CO)2(CO)25-C9H7)2] (1) reacts with aryllithium reagents, ArLi (Ar = C6H5, p-CH3C6H4, p-CF3C6H4) followed by alkylation with Et3OBF4 to give the diindenyl-coordinated diiron bridging alkoxycarbene complexes [Fe2{μ-C(OC2H5)Ar}(μ-CO)(CO)25-C9H7)2] (2, Ar = C6H5; 3, Ar = p-CH3C6H4, 4, Ar = p-CF3C6H4). Complex 4 reacts with HBF4 · Et2O at low temperature to yield cationic bridging carbyne complex [Fe2(μ-CC6H4CF3-p)(μ-CO)(CO)25-C9H7)2]BF4 (5). Cationic 5 reacts with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complex [Fe2{μ-C(H)C6H4CF3-p}(μ-CO)(CO)25-C9H7)2] (6). The reaction of 5 with NaSC6H4CH3-p under the similar conditions gave the bridging arylthiocarbene complex [Fe2{μ-C(C6H4CF3-p)SC6H4CH3-p}(μ-CO)(CO)25-C9H7)2] (7). Complex 5 can also react with carbonylmetal anionic compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to produce the diiron bridging aryl(penta-carbonylcyanometal)carbene complexes [Fe2{μ-C(C6H4CF3-p)NCM(CO)5}(μ-CO)(CO)25-C9H7)2] (8, M = Cr; 9, M = Mo; 10, M = W). The structures of complexes 4, 6, 7, and 10 have been established by X-ray diffraction studies.  相似文献   

17.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

18.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

19.
The cations in the solid-state structures of meso-(ΛΔ)-[{Ru(bpy)2}2(μ-bpm)](PF6)4, meso-(ΛΔ)-[{Ru(Me2bpy)2}2(μ-bpm)](tos)4 · 2CH3OH · 4H2O and meso-(ΛΔ)-[{Ru(Me4bpy)2}2(μ-bpm)](tos)4 · 26H2O (bpm = 2,2′-bipyrimidine; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine; Me4bpy = 4,4′,5,5′-tetramethyl-2,2′-bipyridine; tos = toluene-4-sulfonate anion) exhibit similar features including comparable bond lengths and angles, and metal–metal separations of 5.56–5.59 Å. The counter-ions present in the structures reside in the clefts above and below the plane of the bridging ligand, but show considerable variation in location compared with their known occupancy in solution.  相似文献   

20.
Diphenylphosphinecyrhetrene ligand (η5-C5H4PPh2)Re(CO)3 (1) reacts with 1 equiv. of PdCl2(NCPh)2 to form, after workup, the square-planar trans-[(η5-C5H4PPh2)Re(CO)3]PdCl2(NCMe) (2). Similarly, reaction of 1 with (tetrahydrothiophene)AuCl produces, in excellent yield, the bimetallic complex [(η5-C5H4PPh2)Re(CO)3]AuCl (3) with a linear P–Au–Cl moiety. From the reaction of 2 equiv. of 1 with CuBr(SMe2) the planar-trigonal complex [(η5-C5H4PPh2)Re(CO)3]2CuBr (4) was obtained. 31P NMR and X-ray crystallography demonstrate, for the three cases, that (η5-C5H4PPh2)Re(CO)3 acts as a monodentate ligand. The structural parameters of the bimetallic complexes are compared with related diphenylphosphinoferrocene metal complexes, described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号