首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

2.
The cationic complexes [({Ph3P}2C)Ag(C{PPh3}2)]X (2+, X = Cl, BF4) with a linear arrangement of the ligands were obtained from the reaction of C(PPh3)2 (1) with the appropriate AgX in THF. The 31P NMR spectrum of the cation 2+ exhibits a doublet with J(Ag,P) = 15.3 Hz. The cation was also formed when the adduct O2C ← 1 was allowed to react with AgX in CH2Cl2 in the first step as shown by 31P NMR; however, deprotonation of the solvent finally produced the cation (HC{PPh3}2)+, (H1)+ quantitatively. In the absence of coordinating anions, the tricationic complex [({Ph3P}2CH)Ag(CH{PPh3}2)](BF4)3 (3), containing the cation (H1)+ as ligand, could be isolated by reacting AgBF4 with the salt (H1)(BF4). All compounds were characterized by IR and 31P NMR spectroscopy; the structures of the compounds [2]Cl·1.25THF, 3·5CH2Cl2, 3·4C2H4Cl2, and (H1)(BF4) could be established by X-ray analyses.  相似文献   

3.
A high-yield synthesis of trans-RuCl2(CS)(H2O)(PPh3)2 from RuCl2(PPh3)3 and CS2 is described. The coordinated water molecule is labile, and introduction of CNR (R  p-toyl or p-chlorophenyl) leads to yellow trans-RuCl2(CS)(CNR)(PPh3)2, which isomerises thermally to colourless cis-RuCl2(CS)(CNR)(PPh3)2. Reaction of AgClO4 with cis-RuCl2(CS)(CNR)(PPh3)2 gives [RuCl(CS)(CNR)(H2O)(PPh3)2]+, from which [RuCl(CS)(CO)(CNR)(PPh3)2]+ and [RuCl(CS)(CNR)2(PPh3)2]+ are derived. Reaction of trans-RuCl2(CS)(H2O)(PPh3)2 with sodium formate gives Ru(η2-O2CH)Cl(CS)(PPh3)2, which undergoes decarboxylation in the presence of (PPh3) to give RuHCl(CS)(PPh3)3. Ru(η2-O2CH)H(CS)(PPh3)2 and Ru(η2-O2CMe)-H(CS)(PPh3)2 are also described.  相似文献   

4.
Mixed ligand silver(I) complexes of triphenylphosphine and heterocyclic thiones (imidazolidine-2-thione (Imt), diazinane-2-thione (Diaz) and 2-mercaptopyridine (Mpy)) having the general formulae [(Ph3P)Ag(thione)2]NO3 and [(Ph3P)2Ag(thione)]NO3 were prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 31P) spectroscopic methods. The crystal structure of one of the complexes, [Ag(Ph3P)(Diaz)2]2(NO3)2 (1) was determined by X-ray crystallography. The title complex (1) is dinuclear, having each silver atom coordinated to three thione sulfur atoms of Diaz and to one phosphorus atom of PPh3 in a nearly tetrahedral environment, with an average P-Ag-S bond angle of 108.5°. The spectral data of the complexes are consistent with sulfur coordination of the thiones to silver(I). Antimicrobial activities of the complexes were evaluated by minimum inhibitory concentrations and the results showed that the complexes exhibit a wide range of activity against two gram-negative bacteria (E. coli, P. aeruginosa) and molds (A. niger, P. citrinum), while the activities were poor against yeasts (C. albicans, S. cerevisiae).  相似文献   

5.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

6.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

7.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6 or BPh4 salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4.  相似文献   

8.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

9.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

10.
In addition to well-known dinuclear phenylselenolato palladium complexes, the reaction of [PdCl2(PPh3)2] and NaSePh affords small amounts of novel trinuclear and hexanuclear complexes [Pd3Se(SePh)3(PPh3)3]Cl (1) and [Pd6Cl2Se4(SePh)2(PPh3)6] (2). Complex 1 is triclinic, P1?, a=13.6310(2), b=16.2596(2), c=16.9899(3) Å, α=83.1738(5), β=78.9882(5), γ=78.7635(5)°. Complex 2 is monoclinic, C2/c, a=25.7165(9), b=17.6426(8), c=27.9151(14) Å, β=110.513(2)°. There are no structural forerunners for 1, but the hexanuclear complex 2 is isostructural with [Pd6Cl2Te4(TeR)2(PPh3)6] (R=Ph, C4H3S) that have been observed as one of the products in the oxidative addition of R2Te2 to [Pd(PPh3)4]. Mononuclear palladium complexes may play a significant role as building blocks in the formation of the polynuclear complexes.  相似文献   

11.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

12.
The reaction of [Ru(CO)2(PPh3)3] (1) with o-styryldiphenylphophine (SP) (2) gave [Ru(CO)2(PPh3)(SP)] (3) in 83% yield. This styrylphosphine ruthenium complex 3 can also be synthesized by the reaction of [Ru(p-MeOC6H4NN)(CO)2(PPh3)2]BF4 (4) with NaBH4 and 2 in 50% yield. When “Ru(CO)(PPh3)3” generated by the reaction of [RuH2(CO)(PPh3)3] (8) with trimethylvinylsilane reacted with 2, [Ru(CO)(PPh3)2(SP)] (10) was produced in moderate yield as an air sensitive solid. The spectral and X-ray data of these complexes revealed that the coordination geometries around the ruthenium center of both complexes corresponded to a distorted trigonal bipyramid with the olefin occupying the equatorial position and the C-C bonding in the olefin moiety in 3 and 10 contained a significant contribution from a ruthenacyclopropane limiting structure. Complexes 3 and 10 showed catalytic activity for the hydroamination of phenylacetylene 11 with aniline 12. Ruthenium complex 3 in the co-presence of NH4PF6 or H3PW12O40 proves to be a superior catalyst system for this hydroamination reaction. In the case of the reaction using H3PW12O40 as an additive, ketimines (13) was obtained in 99% yield at a ruthenium-catalyst loading of 0.1 mol%. Some aniline derivatives such as 4-methoxy, 4-trifluoromethyl-, and 4-bromoanilines can also be used in this hydroamination reaction.  相似文献   

13.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

14.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

15.
A series of 2,4-dinitrophenyl 4-Y-phenyl disulfides (Y=NO2, Br, F, H, CH3, or CH3O) have been shown to react with trans-IrX(CO)(PPh3)2 (X=Cl, Br, or I) in refluxing benzene to form “oxidative-elimination” products of the type, [IrX(SC6h4Y)(SC6H3(NO2)2)(CO)(PPh3)]2. The physical properties of these complexes are discussed in relation to their structure in the solid state and in solution. In particular, available infrared spectral data indicate that these complexes contain 2,4-dinitrobenzenethiolato bridging groups and that the substituted arenethiolato ligand is trans to carbon monoxide.  相似文献   

16.
(N-Tosylimino)triphenylphosphorane (Ph3PNTs) was found to be an efficient imido-transfer reagent for the imidation of a variety of aldehydes using RuCl2(PPh3)3 as the catalyst.  相似文献   

17.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

18.
Reaction of O,O’-diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with diethyl 4-aminobenzylphosphonate (EtO)2P(O)CH2C6H4-4-NH2 leads to the new N-thiophosphorylated thiourea (EtO)2P(O)CH2C6H4-4-[NHC(S)NHP(S)(OiPr)2] (HL). Reaction of the potassium salt of HL with Zn(II), Cd(II) and Co(II) in aqueous EtOH leads to complexes of formula M(L-S,S’)2 (ML2). Heteroligand copper(I) complex of HL and triphenylphosphine was prepared by the reaction of the potassium salt KL and Cu(PPh3)3I. Copper in complex Cu(PPh3)L is bound by one PPh3 and one SCNPS fragment of the chelating ligand. Compounds obtained were investigated by IR, UV–Vis, 1H and 31P{1H} NMR spectroscopy, and microanalysis. The structures of HL and Cu(PPh3)L were investigated by single crystal X-ray diffraction analysis.  相似文献   

19.
Novel bimetallic Ru-Pt and Fe-Pt complexes, [M(C5R5)(L)21-P4)]Y (M = Ru, Fe; R = H, Me; L = PPh3, 1/2Dppf (Ph2P(C5H4)Fe(C5H4)PPh2), 1/2Dppe (Ph2PCH2CH2PPh2); Y = PF6, CF3SO3, BPh4) were synthesized for the first time by the reaction of η1-tetraphosphorus complexes of ruthenium(II) and iron(II), [M(C5R5)(L)21-P4)]Y with platinum(0) complex [Pt(η2-C2H4)(PPh3)2] in acetone. The structures and compositions of the title complexes were studied by the 31P NMR, correlated 31P-31P NMR COSY, NOESY, 1H-spectroscopy, and elemental analysis. The carbene-like fragment Pt(PPh3)2 generated in situ was found to be inserted at the P-P bond of the η1-coordinated tetraphosphorus and migrate between the phosphorus atoms of the obtained ligand μ, η1: η2-P4. The exchange process in the novel complexes was investigated. Original Russian Text ? D.N. Akbayeva, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 9, pp. 673–680.  相似文献   

20.
Methylpalladium(II) dithiolate complexes of the type [PdMe(SS)(ER3] (SS = S2 CNR2 (R = Me or Et), S2COEt, S2P(OR)2 (R = Et, nPr, iPr), S2PPh2; ER3 = PMePh2, PPh3, AsPh3) have been synthesized by the reaction of [Pd2Me2(μ-Cl)2(PMePh2)2] with sodium/potassium/ammonium salts of the dithio acid or by treatment of [PdMeCl(cod)] with ER3 followed by sodium/potassium/ammonium salts of the dithio ligand. All the complexes were characterized by elemental analysis, IR and nuclear magnetic resonance (1H, 31P) data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号