首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct self-assembly of bis-(1-benzoimidazolymethylene)-(2,5-thiadiazoly)-disulfide (L) with CuSO4, Cu(NO3)2 and CuCl2 affords three novel supramolecular complexes: 1-D ladder-like chain complex {[Cu(SO4)(L)] · (CH3OH)}n (1), dimer complexes {[Cu(L)(CH3O)]2(NO3)2} · 2H2O (2) and [Cu(L)(Cl)(N3)]2 · 2CH3OH (3). The nature of the anions is the underlying reason behind the differences in the structures of this series of complexes. Furthermore, utilizing the coordinatively unsaturated complexes 2 and 3 as precursor complexes, two new derivative complexes [Cu(L)(NCS)(CH3O)]2 · 2CH3OH (2A) and [Cu(L)(ClO4)(N3)]2 · 2CH3OH (3A) are obtained by the addition and exchange reactions of complexes 2 and 3 with anions. X-ray crystallographic analysis shows that the two derivatives retain the skeletons of their precursor complexes, and the anions with the stronger coordination capacity only bind to the active position of precursor complexes. In addition, different from the obvious effects on the structures in the direct self-assembly of the metal and ligand, the change of counteranions has no great impact on the structures in the anion exchange reactions. We also study the catalytic activities of the complexes 2, 2A, 3, and 3A, which have similar skeletons, for the oxidative coupling polymerization of 2,6-dimethylphenol (DMP). And we find that the introductions of different coordination counterions produce significant impacts on the catalytic properties of these complexes.  相似文献   

2.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

3.
A versatile neutral metalloligand [Cu(PySal)2] (1) (PySal = 3-pyridylmethylsalicylidene-imino) was exploited as a building unit to construct five complexes {Cu[Cu(PySal)2]2}(ClO4)2 (2), {Cd[Cu(PySal)2]2(H2O)2]} (NO3)2 · 2H2O · 4CH3OH (3), {Zn[μ2-Cu(PySal)2]Cl2}n · nCH3OH (4), {Hg[μ2-Cu(PySal)2]I2}n (5) and {Cd[μ2-Cu(PySal)2]Cl2}n · nCH2Cl2 (6). [Cu(PySal)2] acts as a chelating ligand in discrete complexes 2 and 3 with unbound anions, but as a bis-monodentate bridging ligand in polymers 4, 5 and 6 when halogen anions coordinated cooperatively to metal cations. The coordination geometry of Cu2+ is well-defined square planar in bridging [Cu(PySal)2], analogous to that in free metalloligand (1), but it is distorted square planar in chelating [Cu(PySal)2].  相似文献   

4.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

5.
The synthesis and structural chemistry of four new divalent transition metal complexes of the fluorene ligands 4,5-diazaspirobifluorene (L1) and bis-9-biphenyl-4,5-diazafluorenyl peroxide (L2), [Cu3(L1)4(NO3)6(H2O)2] · 2CH3CN (1), [Cu(L1)(CH3CO2)2(H2O)] · 2H2O (2), [Cd(L1)2(NO3)2] · DMF (3) (DMF = N,N-dimethylformamide) and [Zn2(L2)(μ-Cl)2Cl2] (4) are described. Single-crystal X-ray diffraction analysis reveal that the four complexes exhibit various frameworks due to diverse coordination modes and different conformations of ligands L1 or L2, as well as nitrate, acetate or chloro counterions. L1 in complexes 1, 2 and 3 present an asymmetric rigid bidentate ligand with two nitrogen atoms as the donor sites. Novel complex 4 was formed through complexation between conformationally bent shaped peroxide ligands and zinc(II) dichlorides that adopt a linear coordination geometry, which can also give rise to extended polymeric chains with a zigzag secondary structure.  相似文献   

6.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

7.
A comparative investigation of the coordination behaviour of the 17-membered, N3O2-donor macrocycle, 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane, L, with the soft metal ions Ag(I), Cd(II), Hg(II), and Pd(II) is reported. The X-ray structures of 12 complexes have been determined and a range of structural types, including both mononuclear and dinuclear species, shown to occur. In particular cases the effect of anion variation on the resulting structures has been investigated; L reacts with AgX (X = NO3, ClO4, PF6, OTf and CN) to yield related 2:2 (metal:ligand) complexes of types [Ag2L2(NO3)2] (1), [Ag2L2](ClO4)2 · 2DMF (2), [Ag2L2](PF6)2 · 2DMF (3), [Ag2L2](OTf)2 (4) and [Ag2L2(μ-CN)][Ag(CN)2] · H2O (5). In all five complexes the ether oxygens of each ring are unbound. In 1–4 the macrocycles are present in sandwich-like arrangements that shield the dinuclear silver centres, with each silver bonded to two nitrogen donors from one L and one nitrogen from a second L. A Ag···Ag contact is present between each metal centre such that both centres can be described as showing distorted tetrahedral geometries. In the case of 5 a rare single μ2-κC:κC symmetrically bridging two-electron-donating cyano bridge links silver ions [Ag···Ag distance, 2.7437(10) Å]; the macrocyclic ligands are orientated away from the dinuclear metal centres. In contrast to the behaviour of silver, reaction of cadmium(II) perchlorate with L resulted in a mononuclear sandwich-like complex of type [CdL2](ClO4)2 · CH3CN (6). Again, the ether oxygens do not coordinate, with each L binding to the cadmium centre only via its three nitrogen donors in a facial arrangement such that a distorted octahedral coordination geometry is attained. Reaction of L with HgX2 (X = ClO4, SCN and I) yielded the monomeric species [HgL(ClO4)2] (7), [HgL(SCN)2]·CH3CN (8) and [Hg2L2](HgI4)2 · 2L (9), in which all five donors of L are bound to the respective mercury centres. However, reaction of L with Hg(NO3)2 in dichloromethane/methanol gave a mononuclear sandwich-like complex [HgL2](NO3)2 · 2CH3OH (10) without anion coordination. Reaction of K2PdCl4 and Pd(NO3)2 with L yielded the 1:1 complexes [PdLCl]Cl · H2O (11) and [PdL(NO3)]NO3 · CH3OH (12), respectively, in which the metal is bound to three nitrogen donors from L along with the corresponding chloride or nitrate anion. Each palladium adopts a distorted square-planar coordination geometry; once again the ether oxygens are not coordinated.  相似文献   

8.
Four new coordination polymers of cadmium(II) with hexamethylenetetramine (htm) have been synthesized and characterized by routine physicochemical techniques as well as by X-ray single crystal structure analysis. They are [CdBr(htm)(SCN)(H2O)2·CH3OH]n (1), [CdI(htm)(SCN)(H2O)2·0.5(CH3OH)]n (2), [Cd2(htm)3(SCN)4(H2O)]n·nH2O (3) and [Cd3Br6(htm)2(H2O)5·(htm)(H2O)6]n (4). Complexes 1, 2 and 3 exhibit 1D polymeric structure and complex 4 shows a 2D undulated layered arrangement, containing Cd6(htm)6 hexagonal units as building block, which extended to a 3D supramolecular architecture through hydrogen bonding. Thorough thermal investigation suggest that as far as the thermal stability of Cd(II)-htm bond is concerned it attains the maximum in complex 1 and minimum in complex 4. In case of complex 3 the thermal study inferred that CdS end product was obtained at ∼730 °C, whereas in case of other complexes the thermally stable end product remained unidentified. Solid state fluorescence study shows that all the complexes are luminescent at room temperature except complex 3.  相似文献   

9.
The formation, crystal structure and properties of five copper(II) coordination compounds with the angular ligand, 4,4′-dipyridyl sulfide (dps) are described, {[Cu3(μ-dps)4(μ-SO4)2(SO4)(H2O)5] · 10H2O} (1 · 10H2O), [Cu(dps)4(H2O)2] · (ClO4)2 · H2O (2 · H2O), {[Cu(μ-dps)2(DMF)2](ClO4)2} (3), {[Cu(μ-dps)2(H2O)2] · (NO3)2 · 2H2O} (4 · 2H2O) and {[Cu3(μ-dps)6(DMF)2(H2O)4] · (NO3)6 · (DMF) · 6H2O} (5 · DMF · 6H2O). The topological architectures of all these coordination compounds are strongly dependent on the counteranions, with the aid of guest solvents, and include a chiral 3D non-interpenetrated structure for 1, an acentric mononuclear structure for 2, acentric 2D undulating networks for 3 and 5, and a chiral 1D double-stranded chain for 4. In particular, all these acentric or chiral coordination architectures are generated from an achiral ligand as a building unit, and their second-order non-linear optical (NLO) properties are also studied in this paper.  相似文献   

10.
The bivalent zinc and cadmium complexes of two Schiff bases N-(2-pyridylmethyl)pyridine-2-carbaldimine (L1), N-(2-pyridylmethyl)pyridine-2-methylketimine (L2), tridentate ligands with an N3 chromophore and coordinating with two five-membered chelate rings, were synthesized. Complexes [Zn(L1)(NO3)2] (1), [Zn(L2)(NO3)2] (2), [Cd(L1)(NO3)2(H2O)] (3) and [Cd(L2)(NO3)2(CH3OH)] (4) were characterized by X-ray crystallography. In 1 and 2, Zn(II) has a distorted square-pyramidal geometry where as in 3 and 4, Cd(II) possesses a pseudo-pentagonal-bipyramidal geometry. The following trends in the bond lengths are observed: M–Nim < M–Npy; Zn–N > Zn–O; Cd–N < Cd–O. The final residues from the thermogravimetric analysis are ZnO and CdO, the SEM studies revealed, respectively, their porous and spherical natures. The average activation energy (E) for the loss of pyridine rings obtained from the Friedman fitting of the DSC data, for 1, 2, 3, and 4 are 193.8(2), 114.5(3), 127.1(4), and 63.7(3) kJ mol−1 and their logarithmic pre-exponential factor (A) are 11.22, 5.31, 6.88, and 2.09, respectively.  相似文献   

11.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

12.
Syntheses for [(diphenylphosphinoyl)methyl]-4,5-dihydrooxazole (2) and [(diarylphosphinoyl)methyl]benzoxazoles [aryl = phenyl (3), tolyl (4), 2-trifluoromethylphenyl (5) and 3,5-bis(trifluoromethyl)phenyl (6)] have been developed. Each ligand has been characterized by spectroscopic methods and single crystal X-ray diffraction analyses have been completed for 2, 3, 4 and 5. The coordination chemistry of the ligands with Nd(NO3)3 and Yb(NO3)3 has been examined and structure determinations for [Nd(2)2(NO3)3(CH3OH)], [Nd(2)2(NO3)3], [Yb(3)2(NO3)3(H2O)]·0.5(CH3OH), [Nd(3)2(NO3)3]·3(CHCl3), [Nd(4)2(NO3)3(H2O)], [Yb(4)2(NO3)3(H2O)] and [Yb(5)2(NO3)3(H2O)]·0.5(CH3CN) are reported. Depending upon conditions, the ligands act as monodentate PO or bidentate, chelating PO,N donors.  相似文献   

13.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

14.
The reaction of CuSO4 · H2O with 4-bpytm [4-bpytm = bis(4-pyridylthio)methane] in EtOH afforded the complex [Cu(SO4)(4-bpytm)(H2O)3] · H2O (1 · H2O) while the reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH afforded the complex [Cu(NO3)2(4-bpytm)2] · H2O (2 · H2O). The reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH/dmf under microwave irradiation afforded the pseudo-polymorph [Cu(NO3)2(4-bpytm)2] · Solv (2 · Solv). Compound 1 · H2O forms helical chains while compounds 2 · H2O and 2 · Solv are 2D coordination polymers with a (4,4) topology based on rhombic grids in 2 · H2O and on a parquet motif in 2 · Solv. The 3D supramolecular organization through hydrogen bonding is analyzed for the three compounds and their thermal behaviour was also investigated.  相似文献   

15.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

16.
5-Ferrocenylpyrimidine (FcPM) reacts with dinuclear copper(II) carboxylates ([Cu2(RCOO)4]; R = C6H5, C5H11, CH3) to produce one-dimensional coordination polymers [Cu2(C6H5COO)4(FcPM)]n (1), [Cu2(C5H11COO)4(FcPM)]n · nCH3CN (2), and a discrete tetranuclear complex [Cu2(CH3COO)4(FcPM)2] (3). Compounds 1 and 2 show similar zigzag chain structures, comprising alternate linking of FcPM and dinuclear copper(II) units, whereas the structure of 3 corresponds to the local structural motifs of 1 and 2. Reaction of FcPM with zinc salts (ZnX2; X = NO3, SCN) affords zinc-centered ferrocenyl cluster complexes, [Zn(NO3)2(FcPM)3] (4) and [Zn(SCN)2(FcPM)2] · 0.5H2O (5), with varying M:L ratios. FcPM acts as a bidentate ligand in 1 and 2, and as a monodentate ligand in the others.  相似文献   

17.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

18.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

19.
Four d10-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand (Htpim), {[Zn2(Htpim)4Cl4] · 8H2O}n (1), {[Cd(tpim)2(H2O)2] · 4CH3OH}n (2), {[Cu2(Htpim)(PPh3)2I2] · CH3CN}n (3) and {[Ag(Htpim)](NO3) · CH2Cl2}n (4), have been synthesized and characterized by elemental analyses, IR, thermogravimetric and X-ray structural analyses. Both complexes 1 and 2 show one dimensional ribbon-like structures. Via intermolecular hydrogen bonds, a 2D supramolecular network and 3D framework are formed for 1 and 2, respectively. Complex 3 shows a 1D zigzag chain with a CuI2Cu rhomboid dimer. Complex 4 shows a 1D ladder-like polymer with two different metallacycles. The luminescent properties of all the complexes have been studied in the solid state.  相似文献   

20.
The synthesis, structural chemistry and magnetic properties of a series of new Cu(II) polymers with α,ω-dicarboxylic acids (sebacic (H2seb), suberic (H2sub), succinic (H2suc) and adipic (H2adip)) and 3-aminopyridine (3-apy) are described: [Cu(Hsub)2(3-apy)2·2CH3OH]n (1); [Cu(Hseb)2(3-apy)2·4CH3OH]n (2); [Cu(Hsuc)2(3-apy)2]n (3); [Cu(adip)(3-apy)2]n·n(H2adip) (4). All four compounds feature a bis-monodentate bridging mode of the coordinated dicarboxylate moiety. Compounds 1 and 2 exhibit linear chains, whereas compound 3 shows two-dimensional structure. The 3-apy ligand acts as terminal ligand in 13. Compound 4 contains a doubly deprotonated adipate (adip2−) that connects Cu centers into linear chains. Additionally, 3-apy acts as a bridge in 4, resulting in the formation of parallel two-dimensional layers distant enough to host neutral molecules of adipic acid. Magnetic susceptibility measurements of compounds 1 and 3 show Curie law behavior indicating that the S = 1/2 Cu(II) spin carriers are magnetically well isolated by the dicarboxylate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号