首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Organometallic dithiolene complexes, which were formulated as [Cp*M(dcbdt)] and [Cp*M(dcdmp)] (M = Co, Rh, Ir; Cp* = η5-pentamethylcyclopentadienyl, dcbdt = 4,5-dicyanobenzene-1,2-dithiolate, dcdmp = 2,3-dicyano-5,6-dimercaptopyrazine) were prepared from a low valent Cp*CoI or high valent Cp*MIII species (MIII = CoIII, RhIII, IrIII). The UV-Vis absorption spectral and electrochemical data of them were obtained. The lowest absorption (HOMO-LUMO) energies of them became redshift in order of the Co > Rh > Ir complexes. The reduction potentials suggested that the central metal modifies their LUMO levels. The molecular and crystal structures of [Cp*Co(dcbdt)] (3a), [Cp*Co(dcdmp)] (4a) and [Cp*Rh(dcdmp)] (4b) were determined by X-ray diffraction studies. The cobalt complexes 3a and 4a were monomeric, formally 16-electron complexes and have two-legged piano-stool geometries. The crystal structure of 3a indicated some plane-to-plane intermolecular interactions such as benzene?benzene interaction on the dcbdt ligand and two Cp*?benzene π-π stackings. 4a showed plane-to-plane interaction with a pseudo-4-fold-symmetry arrangement between the pyrazine moieties on the dcdmp ligand. The rhodium complex 4b was dimeric in the crystal to form a criss-cross arrangement and had a three-legged piano-stool geometry, but it was monomerized in solution. The dimer of 3b was observed in the oxidation process of the cyclic voltammogram.  相似文献   

2.
A new method for the analysis of phenoxy acid herbicide residues in rice, based on the use of liquid extraction/partition and dispersive solid phase extraction (dispersive-SPE) followed by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), is reported. 5% (v/v) formic acid in acetonitrile as the extraction solvent and inclusion of citrate buffer helped partitioning of all the analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using C18 and alumina neutral as selective sorbents. Further optimization of sample preparation and determination allowed recoveries of between 45 and 104% for all 13 phenoxy acid herbicides with RSD values lower than 13.3% at 5.0 μg kg−1 concentration level. Limit of detections (LODs) of 0.5 μg kg−1 or below were attained for all 13 phenoxy acids. Quantitative analysis was done in the multiple-reaction monitoring (MRM) mode using two combinations of selected precursor ion and product ion transition for each compound. This developed method produced relatively higher recoveries of the acid herbicides with a smaller range of variation and less susceptibility to matrix effects, than the original QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method.  相似文献   

3.
Three new complexes of the steroid sodium fusidate (sodium 2-[(1S,2S,5R,6S,7S,10S,11S,13S, 14Z,15R,17R)-13-(acetyloxy)-5,17-dihydroxy-2,6,10,11-tetramethyl tetracyclo[8.7.0.02,7.011,15] heptadecan-14-ylidene]-6-methylhept-5-enoate = (NaFusidate, NaFA)]), with triorganotin(IV) moieties have been prepared and investigated by conventional techniques as FTIR, Mössbauer, ESI-MS and NMR spectroscopy. The isolated compounds showed stoichiometries organotin(IV)/fusidate 1/1, R3Sn(IV)FA (R = Me, FA1; Bu, FA2; Ph, FA3). The ligand coordination sites were determined by FTIR spectroscopic measurements. In the complexes, the carboxylate group of the fusidate ligand behaves as monodentate monoanionic donor, binding the Sn(IV) through one oxygen atom.On the basis of C-Sn-OCOO angles, calculated through the rationalization of the 119Sn Mössbauer parameter nuclear quadrupole splitting, it has been confirmed that, in all the solid state complexes, the Sn(IV) was tetracoordinated in a distorted tetrahedral structure.Further data from 119Sn CP-MAS spectra confirmed the distorted tetrahedral arrangement.In MeOH solution, 1H, 13C and 119Sn NMR spectroscopy showed monomeric complexes, where the carboxylate group mainly acts as monodentate ester-type ligand, and the occurrence of a coordinated solvent molecule to the tin center, as validated by non-relativistic NMR DFT study.  相似文献   

4.
Two novel amphiphilic BAB-type block copolymers, ADN-PEG3400-ADN and Py-PEG3400-Py containing deep blue and bluish-green fluorescent moieties were prepared using atom transfer radical polymerization (ATRP) (where, ADN = poly(9,10-di(1-naphthalenyl)-2-vinylanthracene), Py = poly(1-vinyl pyrene) and PEG3400 = poly(ethylene glycol) with Mn = 3400 g/mol). The GPC number averaged molecular weights (MW) of the block copolymers were Mn = 9600 and 13,800 g/mol, respectively, based on polystyrene MW standards. The PEG3400 segment has a melting temperature (Tm peak) at 64–65 °C, whereas the glass transition temperatures (Tg midpoint) of the ADN and Py segments were found to be 230 °C and 193 °C, respectively, and are similar to their respective homopolymers indicating complete microphase segregration. The photoluminescence (PL) emission of the copolymers ADN-PEG3400-ADN exhibited two maxima at 423.5 nm and 441.5 nm while Py-PEG3400-Py has a maximum at 488.5 nm. Both copolymers form individual spherical micelles with diameter from 30 to 90 nm for Py-PEG3400-Py and 40–160 nm for ADN-PEG3400-ADN. The micelles, however, transform into cross-linked pearl-necklace-like aggregates at polymer concentrations above 1000 ppm, which may be attributed to the physical cross-linking between adjacent spherical micelles caused by the PEG3400 segments.  相似文献   

5.
Two series of complexes of the types trans-[CoIII(Mebpb)(amine)2]ClO4 {Mebpb2− = N,N-bis(pyridine-2-carboxamido)-4-methylbenzene dianion, and amine = pyrrolidine (prldn) (1a), piperidine (pprdn) (2a), morpholine (mrpln) (3a), benzylamine (bzlan) (4a)}, and trans-[CoIII(cbpb)(amine)2]X {cbpb2− = N,N-bis(pyridine-2-carboxamido)-4-chlorobenzene dianion, and amine = pyrrolidine (prldn), X = PF6 (1b), piperidine (pprdn), X = PF6 (2b), morpholine (mrpln), X = ClO4 (3b), benzylamine (bzlan), X = PF6 (4b)} have been synthesized and characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structure of 1a has been determined by X-ray diffraction. The electrochemical behavior of these complexes, with the goal of evaluating the effect of axial ligation and equatorial substitution on the redox properties, is also reported. The reduction potential of CoIII, ranging from −0.53 V for (1a) to −0.31 V for (3a) and from −0.48 V for (1b) to −0.22 V for (3b) show a relatively good correlation with the σ-donor ability of the axial ligands. The methyl and chloro substituents of the equatorial ligand have a considerable effect on the redox potentials of the central cobalt ion and the ligand-centered redox processes.  相似文献   

6.
Three tris(salicyladiminato) samarium complexes were synthesized by the reaction of anhydrous SmCl3 with the sodium salts of the Schiff-bases in THF in 3:1 molar ratio. X-ray diffraction studies revealed that the coordination geometry around samarium atom could be best described as a distorted pentagonal bipyramidal for complexes 1 and 2 and as a distorted tricapped trigonal prism for complex 3. It was found that the coordination environment around samarium atom has significant effect on the catalytic activity of homoleptic Schiff-base complexes of lanthanide. The increasing order of the catalytic activity for the ring-opening polymerization of ε-caprolactone, as well as guanylation of aniline with N,N-diisopropylcarbodiimide is 3 < 2 < 1.  相似文献   

7.
The ternary complexes of [CuII(Hist)(Tyr)]+1 and [CuII(Hist)(Trp)]+2 have been synthesized, structurally characterized and their DNA binding and cleavage abilities probed. The intrinsic binding constants (Kb) for complexes/CT-DNA were also determined (Kb = 2.7 × 102 for complex 1 and Kb = 2.2 × 102 for complex 2). These complexes exhibit their nuclease activity on plasmid DNA, which seems to depend on the nature of the aromatic moiety. The DNA hydrolytic cleavage rate constants were also determined for complexes 1 and 2, which are 0.91 and 0.79 h−1, respectively.  相似文献   

8.
Tonkinensines A (1) and B (2), two novel cytisine-type alkaloids that feature the skeleton with a linkage to pterocarpan, were isolated from the roots of Sophora tonkinensis. Their structures and absolute configurations were elucidated by spectroscopic methods, especially X-ray crystal diffraction and CD spectral analysis. The proposed biosynthetic pathway was also discussed. Both 1 and 2 were tested in HeLa and MDA-MB-231 tumor cell lines, and compound 2 showed moderate cytotoxic activity.  相似文献   

9.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

10.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

11.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

12.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

13.
The synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes, tetra-substituted with 3,4-(methylendioxy)-phenoxy at the peripheral (complexes 3 and 5) and non-peripheral (complexes 4 and 6) positions, are reported. Complexes 3 and 4 showed Q-band absorption, in DMF, at 668 and 686 nm, respectively while Q-band due to complexes 5 and 6 appeared at 732 and 760 nm, respectively in CHCl3. All the complexes showed well resolved redox processes attributed to both metal and ring based processes. Complexes 3 and 4 showed four redox processes, labeled I, II, III and IV. For complex 3, process I (CoIPc−2/CoIPc−3) was observed at −1.45 V, II (CoIIPc−2/CoIPc−2) at −0.38 V, III (CoIIIPc−2/CoIIPc−2) at +0.49 V and IV (CoIIIPc−1/CoIIIPc−2) at +0.97 V versus Ag|AgCl. Similar processes were observed for complex 4 at −1.36 V, −0.27 V, +0.56 V, +1.03 V versus Ag|AgCl, respectively. Complexes 5 and 6 showed two redox processes (I and II). For complex 5, these processes appeared at −0.79 V (MnIIPc−2/MnIIPc−3, I) and −0.07 V versus Ag|AgCl (MnIIIPc−2/MnIIPc−2, II), while for complex 6, they were observed at −0.86 V and −0.04 V versus Ag|AgCl. Spectroelectrochemistry was used to probe and confirm the origin of these processes.  相似文献   

14.
15.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

16.
Two complexes: [(n-Bu2Sn)4(L)2O2(OC2H5)2] (1) and [(C6H5)3Sn(L)] (2) (where, HL is 12-(4-methylbenzoyl)-9,10-dihydro-9,10-ethanoanthracene-11-carboxylic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of 1 and 2 have been determined by X-ray crystallography. Three distannoxane rings are present to the centrosymmetric dimeric tetraorganodistannoxane by virtue of μ3-oxo form the central R4Sn2O2 core with a planar Sn2O2 ring, resulting in a ladder type structural motif in the molecular structure of 1, and five-coordinated tin atoms are present in the distannoxane dimer. While the molecular of 2 adopts a monomeric distorted tetrahedral configuration with the carboxylate ligand coordinating in a monodentate mode. Both 1 and 2 exhibited good antibacterial and antitumour activities and have a potential to be used as drugs.  相似文献   

17.
The syntheses of new cobalt phthalocyanine (CoPc) complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral (complex 3b) positions, and with benzylmercapto at the non-peripheral position (complex 5), are reported. The effects of the nature and position of substituent on the spectral, electrochemical and spectroelectrochemical properties of these complexes are investigated. Solution electrochemistry of complex 3a showed three distinctly resolved redox processes attributed to CoIIIPc−2/CoIIPc−2 (E½ = +0.64 V versus Ag|AgCl), CoIIPc−2/CoIPc−2 (E½ = −0.24 V versus Ag|AgCl) and CoIPc−2/CoIPc3 (E½ = −1.26 V versus Ag|AgCl) species. No ring oxidation was observed in complex 3a. Complex 3b showed both ring-based oxidation, attributed to CoIIIPc−1/CoIIIPc−2 species (Ep = +0.86 V versus Ag|AgCl), and ring-based reduction associated with CoIPc−2/CoIPc−3 species (E½ = −1.46 V versus Ag|AgCl), with the normal metal-based redox processes in CoPc complexes: CoIIIPc−2/CoIIPc−2 (Ep = +0.41 V versus Ag|AgCl) and CoIIPc−2/CoIPc−2 (E½ = −0.38 V versus Ag|AgCl). Solution electrochemistry of complex 5 showed the same type and number of species observed in complex 3a: CoIIIPc−2/CoIIPc−2 (Ep = +0.59 V versus Ag|AgCl), CoIIPc−2/CoIPc−2 (E½ = −0.26 V versus Ag|AgCl) and CoIPc−2/CoIPc−3 (E½ = −1.39 V versus Ag|AgCl) species. These processes were confirmed using spectroelectrochemistry.  相似文献   

18.
A series of square-pyramidal copper(II) complexes, [Cu(LSe)(NN)] (H2LSe = seleno-bisphenolate; NN = bipyridyl, phenanthroline or N,N-dimethylethylenediamine) have been synthesized and characterized by elemental analyses, magnetic measurements, IR, EPR, and electronic spectral studies. Single crystal X-ray structures of [Cu(LSe)(bpy)]·H2O (2), [Cu(LSe)(phen)]·CH2Cl2 (3) and [Cu(LSe)(N,N-Me2en)] (4) showed that all the complexes have approximately square-pyramidal geometry. In complexes 2 and 3, the square plane is occupied by O(1), O(2), N(1) and N(2) and the apical position by Se atom of LSe 2− ligand. The asymmetric unit of complex 4 contains two crystallographically independent discrete molecules A and B with CuN2OSe chromophore comprising the square plane and the axial position being occupied by another phenolate oxygen atom. Complexes 2, 3 and 4 are found to be paramagnetic and EPR parameters extracted are: g = 2.232, g = 2.069; 〈geff〉 = 1.95; and g = 2.232, g = 2.083 for complexes 2, 3 and 4, respectively. Both the complexes 2 and 4 show three reduction processes: (a) a quasi-reversible reduction of CuII to CuI, (b) an irreversible reduction of CuI to Cu0 with the release of free ligand, and (c) a reduction process occurs at this coordinated ligand. They also show a well-defined quasi-reversible oxidation of CuII to CuIII and an irreversible oxidation peak at ∼1.30 and 1.40 V vs. Ag/AgCl for 4 and 2, respectively, with no cathodic counterpart, and were attributed to the oxidation of the metal coordinated ligand.  相似文献   

19.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号