首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Straw-like nano-structure of a new mixed-ligand Zn(II) two-dimensional coordination polymer, {[Zn(μ-4,4′-bipy)(μ-3-bpdb)(H2O)2](ClO4)2·4,4′-bipy·3-bpdb·H2O}n (1) {4,4′-bipy = 4,4′-bipyridine and 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene}, was synthesized by a sonochemical method. The new nano-structure was characterised by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compound 1 was structurally characterised by single crystal X-ray diffraction and consists of two-dimensional polymeric units. ZnO nanoparticles were obtained by calcination of compound 1 at 500 °C under air atmosphere and were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

2.
A series of new HgI2 organic polymeric complexes, [Hg2(L1)I4]n (1), [Hg(L2)I2]n (2), [Hg(L3)I2]n (3), [Hg2(L4)I4]n (4), [Hg(L5)I2]n (5), [Hg(L6)I3](HL6) (6) {L1 = 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene, L2 = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, L3 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, L4 = 2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene, L5 = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and L6 = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene} was prepared from reactions of mercury(II) iodide with six organic nitrogen donor-based ligands under thermal gradient conditions using the branched tube method. All these compounds were structurally characterized by single-crystal X-ray diffraction. The HgI2 coordination polymers obtained with the ligands L2, L3 and L5 show one-dimensional zig-zag motifs and in these compounds the HgI2 units are connected to each other by the ligands L2, L3 and L5 through the pyridyl nitrogen atoms. The L1 and L4 ligands in the compounds 1 and 4 act as both a chelating and bridging group. In the compound 6 the ligand L6 acts as a monodentate ligand, resulting form a discrete compound. The thermal stabilities of compounds 16 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

3.
Three new BiBr3 supramolecular complexes, [Bi2(3-bpdb)2Br8]·(3-H2bpdb) (1), [Bi2(3-Hbpdh)2Br8] (2) and [Bi2(4-bpdh)Br9]·3(4-Hbpdh) (3) {3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, 3-bpdh = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene} were prepared by the reaction of bismuth(III) bromide with three organic nitrogen donor based ligands under thermal gradient conditions using the branched tube method. All three compounds were structurally characterized by single-crystal X-ray diffraction. In complex 1 the bismuth atoms are coordinated by one pyridyl nitrogen atom of the 3-bpdb ligand and are bridged by two bromide atoms to produce a dimeric complex. Compound 2 consists of dimeric units and the bismuth atoms are linked by one nitrogen atom of the 3-Hbpdh ligand and by five bromide atoms, and can be considered to be six-coordinate with a Br5N array of donor atoms. The single-crystal X-ray data of compounds 1 and 3 show that the compounds contain two anionic and cationic 1D chains, [3-H2bpdb]2+[Bi2(3-bpdb)2Br8]2− and 3[4-Hbpdh]+[Bi2(4-bpdh)Br9]3−. In all three compounds extensive hydrogen-bonding interactions produce supramolecular networks. The thermal stabilities of compounds 1–3 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

4.
Cis-diaquobis{di-(2-pyridyl)-N-ethylimine}nickel(II) chloride (2) was obtained from the reaction of di-(2-pyridyl)-N-ethylimine (1) and [NiCl2dppe] [dppe = cis-1,2-bis(diphenylphosphino)ethylene] in a 2:1 ratio in hot acetonitrile. Cis-dichloro{di-(2-pyridyl)-N-ethylimine}palladium(II) (3) and cis-dichloro{di-(2-pyridyl)-N-ethylimine}platinum(II) (4) complexes were obtained from the reaction of MCl2 (M = Pd, Pt) and (1) in equimolar ratio in hot acetonitrile. Compounds 1–4 were characterized by IR spectroscopy, elemental analysis, and mass spectrometry; the complexes 3 and 4 were characterized in solution by NMR. In addition, solid state structures of compounds 14 were determined using single crystal X-ray diffraction analyses. X-ray diffraction data of the complexes 3 and 4 showed a distorted square planar local geometry at palladium and platinum atoms with the chlorine atoms in a cis-coordination; in 2 a local octahedral geometry at nickel atom was observed. Complexes 3 and 4 are arranged as dimers with a M?M distance of 3.4567(4) Å (M = Pd) and 3.4221(4) Å (M = Pt), respectively; 2 consists of units linked by intermolecular hydrogen bonding.  相似文献   

5.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

6.
Four mercury(II) thiocyanate–organic polymeric complexes, [Hg(μ-4,4-bipy)(SCN)2]n (1), [Hg(μ-bpa)(SCN)2]n (2), [Hg(μ-bpe)(SCN)2]n (3), [Hg(μ-bpp)(SCN)2]n (4) {4,4-bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene and bpp = 1,3-di(4-pyridyl)propane} were prepared from reactions of mercury(II) thiocyanate with four rigid and flexible organic nitrogen donor-based ligands under thermal gradient conditions, brunched tube method. All these compounds were structurally determined by X-ray single-crystal diffraction. The thermal stabilities of compounds 14 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Solid state luminescent spectra of compounds 1 and 3 indicate intense fluorescent emissions at 430 and 468 nm, respectively.  相似文献   

7.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

8.
The reaction of copper(II) acetate or fluoride with classic dioximes in the presence of 1,2-bis(4-pyridyl)ethane resulted in four novel compounds with the compositions [Cu2(dmgH)4bpe] (1), [Cu2(NioxH)4bpe] (2), [Cu2(dpgH)4bpe] (3), and [Cu2(dpgH)4bpe][Cu(dpgH)2bpe]2·2DMF (4) (where dmgH2 = dimethylglyoxime, NioxH2 = 1,2-cyclohexanedionedioxime, dpgH2 = diphenylglyoxime, bpe = 1,2-bis(4-pyridyl)ethane, and DMF = N,N′-dimethylformamide), whose crystal structures were determined by single crystal X-ray diffraction. In the binuclear molecules 1-3, as well as in both binuclear and mononuclear molecules in 4 each Cu(II) atom has an identical N5-environment formulated by four oximic nitrogen atoms of two monodeprotonated ligands in a slightly distorted square planar mode, and the nitrogen atom of the bpe molecule being in the apical position. The new compounds were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Luminescence investigations for 1, 2 and 4 were carried out to clarify whether the guest inclusion in the crystal lattice is accompanied by changes in the emission spectra.  相似文献   

9.
10.
From the reaction between Zn(NO3)2 · 6H2O and tetrabutylammonium croconate violet ((NBu4)2CV) in the presence of the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a novel neutral 2-D coordination polymer {[Zn(μ-BPP)(BPP)(CV)(H2O)] · H2O}n (1) was obtained. Compound 1 was characterized by means of elemental analysis, thermogravimetric analysis and vibrational spectroscopy. The crystal structure of 1 reveals that each Zn(II) is coordinated by three nitrogen atoms from two different BPP ligands, two oxygen atoms from one Croconate Violet dianion and one aqua ligand, within a distorted octahedral geometry in a facial arrangement (ZnN3O3). One of the BPP ligands adopts a TG (trans–gauche) conformation bridging two zinc centers giving rise to a 1-D polymeric chain along the crystallographic a axis, and the other is coordinated to metal site in a monodentate fashion adopting a TT (trans–trans) conformation. Adjacent 1-D chains are extended into a 2-D coordination network of (4, 4) topology through cooperative hydrogen bonding involving N31, OW2 and OW1 atoms, in direction of the c axis. Two complementary 2-D sheets fit each other exhibiting an interdigitation phenomenon, giving rise to a bilayer supramolecular structure.  相似文献   

11.
The varying coordination modes of the title ligand, L [5-methyl-1-(pyridin-2-yl)-N′-[pyridin-2-ylmethylidene]pyrazole-3-carbohydrazide] towards the different metal centers is reported by preparation and characterization of Cu(II), Zn(II) and Cd(II) complexes, [Cu(L)NO3.H2O](NO3) (1) [Zn(L)2](ClO4)2·2DMF (2) and [Cd(L)(I)2] (3) respectively. In 1, the neutral ligand serves as tetradentate 4 N donor where both pyridine and pyrazole nitrogen atoms of pyridyl–pyrazole part are coordinatively active, leaving the carbonyl oxygen of the carbohydrazide part inactive. The same pyridine and pyrazole N atoms remain abstained from the coordination process towards the Zn(II) and Cd(II) metal centers. For 2 and 3 the ligand behaves as a tridentate NNO donor where the two nitrogen atoms come from azomethine, pyridine of pyridine-2-carbaldehyde parts and O from carbonyl oxygen atoms (carbohydrazide part). The complex 1 and 2 are distorted octahedral while complex 3 adopts distorted square pyramidal geometry. All the complexes are X-ray crystallographically characterized.  相似文献   

12.
Zinc(II) complexes of the formula [Zn(L)(X)2] (where X = Cl, N3, NCO and SCN (1a-d, respectively)) and {[Zn(L)(ClO4)(H2O)](ClO4)}n (2), were isolated in the pure form on the reaction of 1,3-bis(2-pyridylmethylthio)propane (L) with different zinc(II) salts. All the complexes were characterized by physicochemical and spectroscopic tools. The X-ray crystallographic analyses of the complexes 1d and 2 showed that the former is mononuclear while complex 2 is a 1D coordination polymer, {[Zn(L)(ClO4)(H2O)](ClO4)}n, due to a different coordination mode of the tetradentate ligand L. The zinc(II) ions present an octahedral coordination geometry in both compounds, which is more distorted in the mononuclear complex 1d. The study indicates that the counter anion of the zinc(II) salt used as reactant leads to a different type of complex when isolated as a crystalline material. A spectroscopic study of the interaction of complex, 2 with calf thymus-DNA (CT-DNA) in Tris-HCl buffer showed a significant non-intercalative interaction with a binding constant (Kb) of 4.7 × 104 M−1, and the linear Stern-Volmer quenching constant (Ksv) and the binding sites (n) were found to be 1.3 × 103 and 0.92 respectively, calculated from ethidium bromide (EB) fluorescence displacement experiments.  相似文献   

13.
Three new fluorous coordination polymers with a fluorinated carboxylate tecton and N-donor co-ligands, {[Zn2(hfipbb)2(phen)2]·2H2O}n (1), [Zn2(hfipbb)2(bipy)(H2O)]n (2), and [Zn5(hfipbb)4 (Hhfipbb)2 (bpp)]n (3), [H2hfipbb = 4,4′-(hexafluoroisopropylidene)bis(benzoic acid), phen = 1,10-phenthroline, bipy = 4,4′-bipyridine, and bpp = 1,3-bi(4-pyridyl)propane], have been prepared and characterized by elemental analysis, IR spectra, and X-ray diffraction. Compound 1 exhibits a 3D supramolecular network assembled from two independent 1D chain motifs [Zn(hfipbb)(phen)] through π?π stacking, and C-H?F and O-H?O interactions. Compound 2 features 2D undulating layer structure with 44-sql network. Whereas, in compound 3, pentanuclear [Zn5(η2-O)2(μ2-η1:η1-CO2)]2− cores are bridged by hfipbb2− and bpp ligands into a 3D 6-connected sxd framework with a point symbol of (33·46·55·6). The diverse arrangements of the compounds show the modulation of the heterocyclic N-donor co-ligands can suitably mediate the coordination requirement of metal centers as well as the binding modes of fluorinated carboxylate tecton, which consequently generate diverse crystalline architectures. In addition, the properties of thermogravimetric analysis, X-ray powder diffraction, and photoluminescent behaviors of the compounds have also been discussed.  相似文献   

14.
Four new coordination polymers {[Ni(HL)(H2O)]·H2O}n (1), {[Co(HL)(H2O)]·H2O}n (2), {[Co(HL)]·4H2O}n (3) and {[Zn(HL)]·2H2O·0.5C2H5OH}n (4) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid] have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 2 display (3, 3)-connected 2D network with (4, 82) topology. While 3 and 4 exhibit a binodal (3, 6)-connected 2D network with a Schläfli symbol (43)2(46, 66, 83). The complexes 14 show remarkable thermal stability and 4 exhibits blue fluorescence with maximum emission at 413 nm upon excitation at 362 nm in the solid state at room temperature. In addition, the magnetic measurements of 3 indicate that there are antiferromagnetic interactions between the neighboring Co(II) centers.  相似文献   

15.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

16.
Three-component reactions involving Ni(II) ions and dicarboxylate and bipyridyl ligands under hydrothermal conditions produce two novel metal-organic coordination polymers formulated empirically as [Ni(PDA)(BPE)] (1) and [Ni2(PDA)2(BPP)(H2O)]·2.5H2O (2), where PDA = 1,4-phenylenediacetate, BPE = 1,2-bis(4-pyridyl)ethane, and BPP = 1,3-bis(4-pyridyl)propane. Both compounds possess 2D or 3D metal-organic frameworks (MOFs) that are assembled on dinickel-carboxylate secondary building units. Compound 1 has a condensed 3D MOF, whereas 2 contains void between 2D MOFs where guest water molecules reside. Both compounds demonstrate antiferromagnetic coupling between Ni(II) ions.  相似文献   

17.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

18.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

19.
Two new dinuclear copper compounds, [Cu2(pypz)2(N3)2(NO3)2] (1) and [Cu2(pypz)2(OH)2(NO3)2] (2), and one 1-D polymeric Cu(II) complex, [Cu(pypz)(dca)3]n (3) [‘pypz’ = (3,5dimethyl-1-(2′-pyridyl)pyrazole) and dca = (dicyanamide)], have been synthesized and characterized crystallographically and spectroscopically. Complex 1 is pseudo-octahedral, adjacent Cu atoms are connected by a pair of μ(1,1) azido groups and the structure is stabilized by π-π interactions between two pyridyl moieties from two different neighboring complex molecules. Complexes 2 and 3 are square pyramidal. The hydroxo bridged complex 2 is further stabilized through H-bonding. The 1-D polymeric chain of 3 is bridged by an end-to-end dicyanamide bridge and it propagates along the crystallographic b axis, whilst the polymer chains are stacked one upon another along the crystallographic c axis. Low temperature magnetic measurement shows that complexes 1 and 2 are ferromagnetic (J values are 30.81 and 14.79 cm−1, respectively), whereas due to larger Cu-Cu distances, complex 3 shows weak ferromagnetism.  相似文献   

20.
Condensation of (R)-2,2′-diamino-1,1′-binaphthyl or (R)-6,6′-dimethylbiphenyl-2,2′-diamine with 2 equiv of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (R)-N,N′-bis(pyridin-2-ylmethylene)-1,1′-binaphthyl-2,2′-diimine (1), and (R)-N,N′-bis(pyridin-2-ylmethylene)-6,6′-dimethylbiphenyl-2,2′-diimine (3), respectively, in good yields. Reduction of 1 with an excess of NaBH4 in a solvent mixture of MeOH and toluene (1:1) at 50 °C gives (R)-N,N′-bis(pyridin-2-ylmethyl)-1,1′-binaphthyl-2,2′-diamine (2) in 95% yield. Rigidity plays an important role in the formation of helicate silver(I) complexes. Treatment of 1, or 3 with 1 equiv of AgNO3 in mixed solvents of MeOH and CH2Cl2 (1:4) gives the chiral, dinuclear double helicate Ag(I) complexes [Ag2(1)2][NO3]2 (4) and [Ag2(3)2][NO3]2 · 2H2O (6), respectively, in good yields. While under the similar reaction conditions, reaction of 2 with 1 equiv of AgNO3 affords the chiral, mononuclear single helicate Ag(I) complex [Ag(2)][NO3] (5) in 90% yield. [Ag2(1)2][NO3]2 (4) can further react with excess AgNO3 to give [Ag2(1)2]3[NO3]2[Ag(CH3OH)(NO3)3]2 · 2CH3OH (7) in 75% yield. All compounds have been fully characterized by various spectroscopic techniques and elemental analyses. Compounds 1 and 5-7 have been further subjected to single-crystal X-ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号