首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (HLI) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfinyl]acetic acid (HLII) were carried out. The investigation of the molecular and electronic structure of Cu(II), Ni(II), Zn(II), Fe(II) and Mn(II) complexes has been performed within the density functional theory (DFT) framework. The computed properties were compared to the experimental ones, and molecular structures of the compounds were proposed based on the array of spectral data and quantum chemical calculations. Antibacterial activity of the Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II), Co(II), Ni(II) and Zn(II) complexes and three standard antibiotics; it was found to follow the order: (1) Сu(LI)2 > Mn(LI)2 > HLI > Ni(LI)2 > Zn(LI)2 > Fe(LI)2 > Co(H2O)2LI; (2) Cu(LII)2 > Сo(LII)2 > Ni(LII)2 > Mn(H2O)2(LII)2 > Fe(LII)2 > HLII > Zn(LII)2; their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. The complexes Сu(LI)2, Mn(LI)2 and Co(LII)2 with the high reducing ability were found to be characterized by the highest rates of Cyt с reduction. NADPH:cytochrome P450-reductase had no substantial effect on the rate of сytochrome c reduction with HLI and HLII ligands.  相似文献   

2.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

3.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

4.
Transition metal complexes [Zn(L1)2] (I) and [Mn(L2)2] (II), where HL1 = pyridine-2-carboxaldehyde S-methyldithiocarbazate, HL2 = pyridine-2-carboxaldehyde S-benzyldithiocarbazate, have been synthesized. Complex II was characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction studies. The manganese(II) atom in complex II adopts a distorted octahedral geometry with the Schiff base coordinated to it as a uninegatively charged tridentate chelating agent via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atom. Biological studies carried out in vitro against selected bacteria, fungi, and K562 leukemia cell line, respectively, have shown that the free ligands and their metal complexes exhibited distinctive differences in the biological properties. Ligand HL1 and complex I have the marked and broad antimicrobial activities compared to HL2 and complex II while only HL1 and complex II show significant antitumor activity against K562 leukemia cell line, since they exhibit IC50 values in the μM range.  相似文献   

5.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

6.
7.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

8.
The synthesis and characterization of new dinuclear MnIII and tetranuclear CuII complexes, [HL1Mn(DMSO)]2 (1) and [H2L2Cu2(MeO)2]2 (2), are reported (H4L1 = 2-hydroxy-N-[2-({2-[(2-hydroxybenzoyl)amino]ethyl}amino)ethyl]benzamide and H4L2 = 2-hydroxy-N-[3-({3-[(2-hydroxybenzoyl)amino]propyl}(methyl)amino)propyl]benzamide). Single crystal X-ray structures have been determined for 1 and 2. In 1 only one of the two amide functions of H4L1 is deprotonated in addition to the phenol ones, while in 2 all the amide functions of H4L2 are protonated and none of the potential nitrogen donors (amide and amine) is involved in the coordination to copper. HL1 and H2L2 do not play the role of compartmental ligands and do not wrap around one Mn and one Cu ion, respectively, but embrace two metal centers yielding, with the respective assistance of auxiliary DMSO and methoxo ligands, dinuclear manganese and tetranuclear copper complexes, respectively. 1 includes two well isolated MnIII ions (Mn?Mn′ = 7.33 Å) that do not interact magnetically. The intermolecular Mn?Mn″ distance along the 1D chains (10.17 Å) is also too large to allow extended magnetic interactions. The pairwise magnetic interactions between the copper(II) ions in the tetranuclear complex 2 are so large that the χMT product is already equal to zero at room temperature, implying that the antiferromagnetic interaction is around −1000 cm−1, as observed previously for di-μ-hydroxo–dicopper complexes.  相似文献   

9.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2-thiophenecarbonyl hydrazone of 3-isatin (H2L1) and 2-furoic hydrazones of 3-isatin (H2L2) and 3-(N-methyl)isatin (HL3), with general composition [M(L)2] · nX, where X is ethanol or/and water, were synthesised and characterised. The molecular structure of HL3 showed that it crystallised in the keto form, which is also the more abundant tautomer for the three hydrazone ligands in solution. The three ligands behave as κ2-O,N donors in the cobalt(II) and zinc(II) complexes. The X-ray crystal structure of pseudotetrahedral [Zn(HL1)2] · 1.75MeOH confirmed the O,N coordination mode of the two monodeprotonated ligands in their keto forms. Secondary interactions of zinc ions with the O atoms of each isatin keto residue provoke a substantial distortion towards a square pyramidal form. The interaction of the isatin keto residues is stronger in the three nickel(II) complexes where the three acylhydrazones can be considered as κ3-O,N,O donors.  相似文献   

10.
11.
The syntheses of a mononuclear zinc(II) complex [ZnCl(L1)(Amp)] (I) and a mononuclear nickel(II) complex [Ni(L2)(HL2)](BF4) · 0.5H2O (II) (HL1 = 4-methyl-2-[(4-methylpyridin-2-ylimino) methyl]phenol, HL2 = 4-methyl-2-[(pyridin-2-ylmethylimino)methyl]phenol; Amp = 2-amino-4- methylpyridine) were prepared under microwave irradiation. The complexes were characterized by a combination of elemental analyses, and IR and electronic spectra. Their structures were further confirmed by single crystal X-ray crystallography (СIF files CCDC nos 1437737 (I), 1437738 (II)). The Zn atom in the monomeric complex I is in tetrahedral coordination. The Ni atoms in the dimeric complex II are in octahedral coordination. Crystals of the complexes are stabilized by hydrogen bonds. In order to evaluate the biological activity of the complexes, in vitro antibacterial against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa was assayed. The complexes have strong activity against Bacillus subtilis.  相似文献   

12.
Four novel molecular square grids were achieved by self-assembly using the flexible ligands bis(di-2-pyridyl ketone) thiocarbohydrazone (H2L1), bis(quinoline-2-carbaldehyde) thiocarbohydrazone (H2L2), bis(di-2-pyridyl ketone) carbohydrazone (H2L3) and bis(2-benzoylpyridine) carbohydrazone (H2L4). Three complexes were given a general formula of [Ni(HL)]4[PF6]4 · nH2O and one [Ni2(HL2)L2]2(PF6)2 · 7H2O. The MALDI-MS spectra reveal the formation of tetranuclear molecular squares. The square grid of the Ni(II) centers in all the complexes were organized by deprotonated ligands. The complex [Ni(HL1)]4[PF6]4 · 11H2O crystallized as [Ni(HL1)]4(PF6)4 · 0.5 CH3CH2OH · 2.8H2O and X-ray study revealed octahedral geometries around the Ni(II) centers. Variable temperature magnetic studies suggest intramolecular antiferromagnetic coupling between the Ni(II) electrons by a super exchange mechanism through intervening sulfur/oxygen atoms.  相似文献   

13.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

14.
Two new linear CuII complexes [Cu(L1)2] (I) (HL1 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-methyl oxime) and [Cu(L2)2] (II) (HL2 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-ethyl oxime) are synthesized and characterized by elemental analysis, IR, UV-Vis, and X-ray diffraction methods. X-ray crystallographic analyses indicate that complexes I and II have a similar structure consisting of one CuII ion and two L units. In the complexes, the CuII ion lying on an inversion centre is four-coordinated in a trans-CuN2O2 square planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime-type ligands. However, the crystal structure of the two complexes is different: complex I forms an infinite three-dimensional supramolecular network structure through intermolecular hydrogen bonding and π...π interaction, while complex II forms an infinite one-dimensional supramolecular structure through intermolecular hydrogen bonds.  相似文献   

15.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

16.
The reaction of lead(II) acetate in methanol with thiosemicarbazones derived from β-keto esters and β-keto amides (HTSCs) afforded two lead(II) thiosemicarbazonates and numerous homoleptic ([PbL2]) and/or heteroleptic ([Pb(OAc)L]) complexes containing deprotonated pyrazolones L formed by metal-induced cyclization of the starting HTSC ligands. All the complexes isolated were characterized by IR spectroscopy in the solid state and by 1H and 13C NMR spectroscopy in DMSO solution; in addition, crystals containing [Pb(L6)2] and [Pb(L7)2] were examined by X-ray crystallography. [Pb(L6)2] · 0.5H2O · 0.3MeOH (HL6 = 4-ethyl-2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothiamide) showed three types of molecule with significant structural differences that appear to be determined by packing interactions. In all three molecules the Pb?Pb distances are very short [3.6096(8)–3.7562(8) Å], but density-functional-theoretic calculations at the B3LYP level do not support the existence of Pb–Pb bonds. In [Pb(L7)2] (HL7 = N-ethyl-2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothiamide) all the molecules are of a single type, and they are linked in a three-dimensional network by weak intermolecular Pb?O bonds.  相似文献   

17.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

18.
Two new sterically demanding diaminophosphinothiolate ligands (HL1 and HL2) have been prepared and the X-ray crystal structure of the Li salt of HL2 has been determined. The complex [Pd(L1)2] was fully characterized, but in contrast to other phosphinothiolates, complexes with the M(L)3 stoichiometry could not be prepared. Reaction of LH1 with Ni(II) led to cleavage of the arythiolate group and isolation of a thiolate bridged dimer, confirmed by an X-ray crystal structure. The Rh(I) complexes [Rh(nbd)L] (L = L1, L2) were characterized including an X-ray structure.  相似文献   

19.

Abstract  

New ternary complexes of Mn(II) with py, bipy, and terpy as primary ligand (L1) and 2′,4′,5′,7′-tetraiodofluorescein (I4FlCOOH) as secondary ligand (L2) were prepared. The stoichiometry for these complexes was found to be Mn(II):L1:L2 = 1:2:1, and the complex formula proposed is [Mn(L1)2(I4FlCOO)]+. The effect of substituent groups of L2 and the nitrogen atoms of L1 on complex formation with Mn(II) was studied. Moreover, the interference of some cations and anions in the determination of Mn(II) by this method was investigated and the interferences of Cu(II) and Fe(III) with Mn(II) in their corresponding alloys were considered. A simple, rapid, and sensitive spectrophotometric method for determination of Mn(II) in its salts and Mn in its alloys is suggested.  相似文献   

20.
The vibrational spectra of CC and MC bonds are studied in a series of complexes LmM(C2H4) (M = PtII, CuI and Fe0). It is shown that the σ—π transfers between LmM and C2H4 are determined by the nature of ligands L and the real charge, but not by the formal charge of the metal. Donor—acceptor properties of LmM towards C2H4 vary in the order Fe > Pt > Cu in this series of complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号