首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Ga(OH)(C(8)H(4)O(4)).0.74C(8)H(6)O(4) (2) and Ga(OH,F)(C(8)H(4)O(4)).0.74C(8)H(6)O(4) (3) were obtained under hydrothermal conditions. The structures of 2 and 3 have the same topological framework as the previously reported aluminum 1,4-benzenedicarboxylate (BDC), Al(OH)(C(8)H(4)O(4)).0.7C(8)H(6)O(4) (1). The frameworks are built by interconnecting M-OH-M chains (M = Al, Ga) with BDC anions to form large diamond-shaped one-dimensional channels filled with additional H(2)BDC guest molecules occupying disordered positions in the channels. Upon removal of H(2)BDC, other guest molecules such as H(2)O and pyridine can be inserted. In this work, we present a study of the intercalation of aromatic guests (BDC and pyridine) into frameworks of 1-3 by liquid and vapor diffusion into the empty channels of 1 and by single-crystal-to-single-crystal solvothermal guest exchange for 2 and 3. In the case of Al(OH)BDC and Ga(OH,F)BDC, two interconvertible, guest-concentration-dependent phases with different orientations of the pyridine guests have been observed, while only one pyridine orientation is found in Ga(OH)BDC.  相似文献   

2.
Despite their apparent similarity, framework materials based on tetraphenylmethane and tetraphenylsilane building blocks often have quite different structures and topologies. Herein, we describe a new silicon tetraamidinium compound and use it to prepare crystalline hydrogen bonded frameworks with carboxylate anions in water. The silicon-containing frameworks are compared with those prepared from the analogous carbon tetraamidinium: when biphenyldicarboxylate or tetrakis(4-carboxyphenyl)methane anions were used similar channel-containing networks are observed for both the silicon and carbon tetraamidinium. When terephthalate or bicarbonate anions were used, different products form. Insights into possible reasons for the different products are provided by a survey of the Cambridge Structural Database and quantum chemical calculations, both of which indicate that, contrary to expectations, tetraphenylsilane derivatives have less geometrical flexibility than tetraphenylmethane derivatives, that is, they are less able to distort away from ideal tetrahedral bond angles.  相似文献   

3.
2,4,8,10-Tetraoxaspiro[5,5]undecanes tetrasubstituted at the 3 and 9 positions with groups incorporating diaminotriazines can be used for the construction of extensively hydrogen-bonded networks by the strategy of molecular tectonics. Four such compounds, tectons 1-4, were made by short and efficient syntheses involving bisketalization of pentaerythritol and subsequent reactions. Unlike tectons typically used in previous studies, compounds 1-4 are flexible and chiral, and they orient four sticky diaminotriazine groups in a distorted tetrahedral geometry. Tecton 1 crystallizes from DMF/toluene as an inclusion compound of approximate composition 1.8DMF.xH2O. In the resulting structure, each tecton participates in a total of 16 hydrogen bonds. Eight of these bonds involve four principal neighbors, and the tectons linked in this way define a distorted diamondoid network. Despite 8-fold interpenetration, 60% of the volume of the network is available for including guests. The guests are disordered and occupy parallel helical channels that have cross sections of approximately 11 x 12 A2 at the narrowest points. These channels provide access to the interior of the crystals and permit guests to be exchanged quantitatively without loss of crystallinity. It is noteworthy that tecton 1, despite its flexibility, small size, and structural simplicity, is apparently unable to find a periodic three-dimensional structure in which the dictates of hydrogen bonding and close packing are satisfied simultaneously.  相似文献   

4.
Four porous crystalline coordination polymers with two-dimensional frameworks of a double-edged axe-shaped motif, [[Co(NCS)(2)(3-pia)(2)] x 2 EtOH.11 H(2)O](n) (1 a), [[Co(NCS)(2)(3-pia)(2)] x 4 Me(2)CO](n) (3 a), [[Co(NCS)(2)(3-pia)(2)] x 4T HF](n) (3 b) and [[Co(NCS)(2)(3-pna)(2)](n)] (5), have been synthesized by the reaction of cobalt(II) thiocyanate with N-(3-pyridyl)isonicotinamide (3-pia) or N-(3-pyridyl)nicotinamide (3-pna). X-ray crystallographic characterization reveals that adjacent layers are stacked such that channels are created, except in 5. The channels form a hydrogen-bonded interior for guest molecules; in practice, 1 a contains ethanol and water molecules as guests in the channels with hydrogen bonds, whereas 3 b (3 a) contains tetrahydrofuran (acetone) molecules. In 1 a, the "double-edged axe-shaped" motifs in adjacent sheets are not located over the top of each other, while the motifs in 3 b stack so perfectly as to overlap each other in an edge-to-edge fashion. This subtle change in the three-dimensional framework is associated with the template effect of the guests. Compound 5 has no guest molecules and, therefore, the amide groups in one sheet are used for hydrogen-bonding links with adjacent sheets. Removal of the guest molecules from 1 a and 3 b (3 a) causes a structural conversion accompanied by a color change. Pink 1 a cannot retain its original framework and changes into a blue amorphous compound. On the other hand, the framework of pink 3 b (3 a) is transformed to a new crystalline framework of violet 4. Interestingly, 4 reverts to the original pink crystals of 3 b (3 a) when it is exposed to THF (or acetone) vapor. Spectroscopic measurements (visible, EPR, and IR) provide a clue to the crystal-to-crystal transformation; on removal of the guests, the amide groups are used to form the beta sheet-type hydrogen bonding between the sheets, and thus the framework withstands significant stress on removal of guest molecules. This mechanism is attributed to the arrangement of the adjacent sheets so suited in regularity that the beta sheet-type structure forms efficiently. The apohost 4 does not adsorb cyclopentane, showing a guest selectivity that, in addition to size, hydrogen-bonding capability is required for the guest molecules. The obtained compound is categorized as a member of a new generation of compounds tending towards functional porous coordination polymers.  相似文献   

5.
Single crystals of three coordination networks containing the Cu(2)(COO)(4) core bridged by cyclohexane have been hydrothermally prepared by the reaction of 1,4-cyclohexanedicarboxylic (1,4-H(2)chdc) or 1,3,5-cyclohexanetricarboxylic (1,3,5-H(3)chtc) acid and Cu(NO(3))(2) x 6H(2)O. We report their characterizations by single-crystal X-ray structure determinations, IR spectroscopy, thermal analyses, and their magnetic properties. [Cu(2)(trans-1,4-chdc)(2)] (1) consists of 4 x 4 grids with the dimeric nodes connected by the trans-1,4-chdc, and these grids are then connected to each other by Cu-O bonds, resulting in a porous network (void volume of 130 Angstrom(3) per cell or 25%) with no solvent in its cavities. [Cu(2)(cis-1,4-chdc)(2)(H(2)O)(2)] (2) consists of two-legged ladders where the dimer nodes are bridged by pairs of cis-1,4-chdc and the water molecules cap the ends of the Cu dimers. [Cu(2)(1,3,5-Hchtc)(2)] (3) displays 4 x 4 grids, but each dimeric node is connected to its neighbors within the same grid by Cu-O bonds to form a layered network which further makes hydrogen-bond interactions with its neighbors. 2 and 3 have compact structures without any space for solvents. IR and DT-TGA confirm the absence of water in the empty channels of 1, while IR shows the presence of both protonated and deprotonated carboxyl groups for 3. The magnetic properties of all three compounds are dominated by the strong Cu-Cu antiferromagnetic interaction resulting in singlet-triplet gaps of 450-500 K.  相似文献   

6.
Molecules with multiple sites of hydrogen bonding attached to suitable cores tend to crystallize as open networks. The resulting crystals can have the following unusual properties: They can include significant amounts of guest molecules; the guests are typically located in channels and can be exchanged without loss of crystallinity; and the geometry of the networks can change in response to new guests. We have found that DFT calculations can provide accurate simulations of the unusual structure and properties of such materials, represented by crystals of prototypic tetrapyridinone 1. These calculations have yielded three key insights that cannot be obtained directly from experiments. (1) The hypothetical porous network obtained by removing guests from crystals of compound 1 is highly flexible, and its deformations are inherently anisotropic, leading to lengthening or shortening of the channels along the c axis and no significant changes along the a and b axes. (2) Quantitative analysis of the total cohesive energy has revealed that hydrogen bonding within the network makes a dominant contribution, along with interactions of guests with the network. (3) Differences in the overall stability of crystals of compound 1 as the guests are varied do not arise primarily from significant changes in the cohesive energy of the network itself; instead, differences in guest-guest interactions play a key role, resulting from the nature of the guests and constraints imposed by the surrounding network. These insights, together with the results of ab initio molecular dynamics, help explain how hydrogen-bonded networks can be robust yet permit molecular movement that underlies the exchange of guests and adaptive porosity. These insights promise to be of general value to scientists studying ordered molecular materials in which strong directional interactions are prominent.  相似文献   

7.
Tetraphenylmethanes with multiple hydrogen-bonding sites are known to associate to form robust porous supramolecular networks. Analogous anionic networks can be built from the corresponding tetraphenylborates. Crystallization of the tetraphenylphosphonium salt of tetraphenylborate 2 produces an anionic network in which 74% of the volume is available for including cations and neutral guests. Other salts of anion 2 with diverse cations crystallize consistently to form the same network, whereas a neutral analogue of anion 2, tetraphenylmethane 1, produces an uncharged network that is far less open. Cations can be exchanged in single crystals of salts of tetraphenylborate 2 with retention of crystallinity and with selectivities similar to those observed in typical zeolites. Together, these observations provide new strategies for making ordered molecular materials by design, and they reveal that constructing such materials from charged subunits offers special advantages.  相似文献   

8.
Four mixed-valent (Mn(IV)Mn(III)(6)Mn(II)(6)) tridecanuclear Mn clusters [Mn(13)O(8)(OH)(6)(ndc)(6)] (1), [Mn(13)O(8)(OEt)(5)(OH)(ndc)(6)] (2), [Mn(13)O(8)(O(2)CPh)(12)(OEt)(6)] (3), and [Mn(13)O(8)(OMe)(6)(ndc)(6)] (4) are reported, where ndcH(2) is 1,8-naphthalenedicarboxylic acid. This is the first use of the latter in Mn chemistry. Complexes 1-3 are essentially isostructural and possess a central core composed of three layers. The middle layer consists of a Mn(II)(6) hexagon containing a central Mn(IV) atom, and above and below this are Mn(III)(3) triangular units. These core Mn atoms are held together by a combination of O(2-), RO(-), or HO(-) bridging groups. The overall metal topology is an unusual one, with the overall geometry being a metal-centered cuboctahedron (heptaparallelohedron). Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Compound 1 was found to possess an S = 9/2 ground-state spin, whereas 2, 3, and 4 have an S = 11/2 ground state. Fitting of the magnetization (M) versus field (H) and temperature (T) data by matrix diagonalization and including only axial zero-field splitting, D, gave D = -0.14 cm(-1) for 1. High-frequency EPR studies were carried out on single crystals of 1.xDMF, and these confirmed D to be very small, that is, 1 is essentially isotropic. The combined work demonstrates the ligating ability of 1,8-naphthalenedicarboxylate, notwithstanding its robust organic backbone and the restricted parallel disposition of its two carboxylate moieties, and its usefulness in the synthesis of new polynuclear Mn(x) clusters. The work also demonstrates a sensitivity of the ground-state spin in this Mn(13) family of complexes to relatively small structural perturbations, while the high-frequency EPR study demonstrated the magnetically isotropic nature of the Mn(13) core.  相似文献   

9.
Das S  Bharadwaj PK 《Inorganic chemistry》2006,45(14):5257-5259
A luminescent Zn(II) complex, [Zn(bpy)(aba)2] (1) {bpy = 2,2'-bipyridyl and aba = 4-dimethylaminobenzoate} has been synthesized as a white solid. Complex 1 shows unusually high selectivity toward nitrobenzene in the presence of other organic guests in solution, as well as in the vapor phase, resulting in both a dramatic color change and a concomitant quenching of luminescence. When crystallized from nitrobenzene, 1 affords deep red crystals with the composition [Zn(bpy)(aba)2] x C6H5NO2 (2) as a hydrogen-bonded channel structure via unusual intermolecular C-H...C(sp3) and H...H interactions. Inside the channels, nitrobenzene molecules form infinite polar linear tapes through strong C-H...O interactions in a head-to-tail fashion. The desorption and resorption of nitrobenzene can be achieved in a thermally reversible manner that can be monitored by X-ray powder diffraction patterns.  相似文献   

10.
Cong R  Yang T  Wang Z  Sun J  Liao F  Wang Y  Lin J 《Inorganic chemistry》2011,50(5):1767-1774
Ln(2)B(6)O(10)(OH)(4)?H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) ?, and β = 108.29(3)°. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)?H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(6)O(10)(OH)(4)?H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)?H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11)(OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)?H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)?H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) → (7)F(2) transition), which may be potential red phosphors.  相似文献   

11.
A strategy for making molecular networks that are porous and deformable is revealed by the behavior of compound 1, in which groups that form hydrogen bonds are attached to a nominally tetrahedral Si core. Compound 1 crystallizes from various carboxylic acids to produce a porous hydrogen-bonded diamondoid network, with up to 65% of the volume available for including guests. Changing the guests expands or contracts the network up to 30% in one direction, and single crystals can accommodate these exchange-induced deformations without loss of crystallinity. This resilience appears to result in part from the incorporation of flexible Si nodes in an otherwise robust network maintained by multiple hydrogen bonds. In certain cases, exchange is faster than deformation of the network, allowing the isolation of metastable structures with a new guest included in an otherwise unchanged network. Such processes can provide new materials that would be difficult or impossible to obtain in other ways.  相似文献   

12.
Using 4-(pyridin-4-yl)benzoic acid, 44pba (1) as a ligand, two new metal-coordination networks [Co(4)(44pba)(8)](n)·[(DMF)(3)·(EtOH)(0.25)·(H(2)O)(4)](n) (2) and [Ni(4)(44pba)(8)](n)·[(DMF)(3.5)·(EtOH)·(H(2)O)(1.5)](n) (3) were synthesized by solvothermal methods and structurally characterized. Compounds 2 and 3 are isostructural but differ in their solvent content. Each is a 2D-network which forms a spiral parallel to [001], giving rise to three distinct large channels, accounting for some 47% of the unit cell volume. Both 2 and 3 display water-induced phase transformations with chromotropism, which has been confirmed by TGA and XRPD analysis. Solvatochromism in 2 is also evident with crystals exhibiting a range of colours depending on the solvent included. This phenomenon has been characterized using TGA, XRPD and UV-vis spectrophotometry.  相似文献   

13.
A series of tetrapodal derivatives of tetraphenylmethane were synthesized and characterized. Crystals obtained from tetrakis(4-acetamidophenyl)methane (1c) and from tetrakis[4-(4-aminobenzamido)phenyl]methane (2b) were analyzed by X-ray diffraction. The analyses pointed to the crystal packing problems faced by molecules of this kind by showing that the crystals, with composition1c·2DMF·2H2O and2b·2DMSO, respectively, contained cocrystallized solvent molecules. The solvent molecules were found in both cases to be held in place by H bonds; in the case of2b·2DMSO they occupied channels running along theb axis. Tetrakis(4-aminophenyl)methane (1b) was used in polycondensation reactions with terephthalic acid, under modified Yamazaki conditions, to produce rigid aromatic polyamide networks. The networks were obtained as gels encompassing the whole volume of the reaction mixture. The volume of the gels did not vary noticeably upon changing the solvent (1-methyl-2-pyrrolidone) with less polar solvents, but the gels collapsed upon drying. No crystallinity was observed.  相似文献   

14.
Wang X  Wang Y  Liu Q  Li Y  Yu J  Xu R 《Inorganic chemistry》2012,51(8):4779-4783
A family of novel 2D-layered lanthanide germanates K(3)[Tb(x)Eu(1-x)Ge(3)O(8)(OH)(2)] (x = 1, 0.88, 0.67, 0; denoted as TbGeO-JU-87, Tb(0.88)Eu(0.12)GeO-JU-87, Tb(0.67)Eu(0.33)GeO-JU-87, and EuGeO-JU-87) were synthesized under mild hydrothermal conditions in a concentrated gel system. They are isostructural, as confirmed by the powder X-ray diffraction analysis. The single-crystal X-ray diffraction analysis of EuGeO-JU-87 reveals that it is a 2D-layered [EuGe(3)O(8)(OH)(2)](n)(3n-) anionic framework, which is built up from GeO(4)H/GeO(4) tetrahedra and EuO(6) octahedra by sharing vertex O atoms. Charge neutrality is achieved by K(+) ions located in the free void space. Interestingly, photoluminescence studies show that Tb(0.88)Eu(0.12)GeO-JU-87 and Tb(0.67)Eu(0.33)GeO-JU-87 exhibit a high Tb(3+)-to-Eu(3+) energy-transfer efficiency and the Tb(x)Eu(1-x)GeO-JU-87 system displays tunable photoluminescent properties.  相似文献   

15.
Nanospheric hydroxo-bridged clusters of [M(20)(OH)(12)(maleate)(12)(Me(2)NH)(12)](BF(4))(3)(OH)·nH(2)O (M = Co (1), Ni (2)) with O(h) symmetry were afforded under hydrothermal condition with Co(BF(4))(2)·6H(2)O/Ni(BF(4))(2)·6H(2)O and fumaric acid in a DMF/EtOH mixed solvent. They are characterized by elemental analysis, IR, and X-ray diffraction. X-ray single crystal diffraction analyses show that these two complexes are isostructural containing an ideally cubic M(8) core in that each two M atoms are doubly bridged at the edges by one OH(-) and one maleate, while these OH(-) and maleate groups are coordinated further by exterior identical 12 M atoms which construct a perfect M(12) icosahedron to encapsulate the cubic core. To our knowledge, such large clusters with O(h) symmetry are seldom. The variable-temperature magnetic susceptibility studies reveal that these two isostructures exhibit antiferromagnetic interactions.  相似文献   

16.
Crystallization of tetrakis(3,5-dihydroxyphenyl)silane (1) from various solvents produces structures built from interpenetrated hydrogen-bonded diamondoid networks. Crystals grown from hexane/methyl propiolate show 5-fold interpenetration, with no volume remaining for the inclusion of guests. In contrast, crystals grown from mixtures of hexane with ethyl acrylate, ethyl acetate, THF, or dioxolane all exhibit submaximal 3-fold interpenetration. Approximately 50% of the volumes are accessible to guests, which occupy regions of diamondoid topology that replace missing networks of tetraresorcinol 1. Of particular interest are crystals containing THF or dioxolane, in which guests occupy two independent systems of interpenetrating diamondoid channels. The submaximally interpenetrated structures of tetraresorcinol 1 provide detailed models of complex topologies adopted by block copolymers and amphiphilic assemblies to optimize interfacial contact.  相似文献   

17.
Zhang H  Duan L  Lan Y  Wang E  Hu C 《Inorganic chemistry》2003,42(24):8053-8058
Three new compounds [Ln(NMP)(4)(H(2)O)(4)][H(x)()GeMo(12)O(40)].2NMP.3H(2)O (Ln = Ce(IV) (1), Pr(IV) (2), x = 0; Ln = Nd(III) (3), x = 1; NMP = N-methyl-2-pyrrolidone) have been prepared in aqueous solution and characterized by elemental analyses, IR, UV-vis, and TG analyses. The single crystal X-ray diffraction shows that all three compounds are isostructural. In their structures, an interesting two-dimensional supramolecular network is constructed by the [GeMo(12)O(40)](4)(-) anion and [Ln(NMP)(4)(H(2)O)(4)](3+/4+) cation building blocks via hydrogen-bonding interactions, exhibiting the porous structure. Upon irradiation with UV light, the crystals of 1-3 show photochromic behavior.  相似文献   

18.
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of metal complexes with two structurally related ligands, 9-acridinecarboxylic acid (HL(1)) and 4-quinolinecarboxylate acid (HL(2)), [Cu(2)(mu(2)-OMe)(2)(L(1))(2)(H(2)O)(0.69)](n) 1, [Cu(2)(L(1))(4)(CH(3)OH)(2)] 2, [Cu(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 3, [Mn(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 4, [Co(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 5, [Cu(L(2))(2)](n) 6, [Mn(L(2))(2)(H(2)O)](n) 7, and [Co(L(2))(2)(H(2)O)](n) 8. 1 is a three-dimensional (3D) polymer with an interpenetrating NbO type network showing one-dimensional (1D) channels, whereas 2 and 3 take bi- and trinuclear structures, respectively, because of the differences in basicity of the reaction systems in preparing the three complexes. 4 and 5 have trinuclear structures similar to that of 3. In 1-5, ligand L(1) performs different coordination modes with N,O-bridging in 1 and O,O'-bridging in 2-5, and the metal ions also show different coordination geometries: square planar in 1, square pyramidal in 2, and octahedral in 3-5. 6 has a two-dimensional structure containing (4,4) grids in which L(2) adopts the N,O-bridging mode and the Cu(II) center takes square planar geometry. 7 and 8 are isostructural complexes showing 1D chain structures, with L(2) adopting the O,O-bridging mode. In addition, the intermolecular O-H...N hydrogen bonds and pi-pi stacking interactions further extend the complexes (except 1 and 6), forming 3D structures. The magnetic properties of 2-7 have been investigated and discussed in detail.  相似文献   

19.
Son JH  Kwon YU 《Inorganic chemistry》2004,43(6):1929-1932
A new intercluster salt crystal [epsilon-Al13O4(OH)24(H2O)12]2[V2W4O19]3(OH)2).27H2O (1) was synthesized from the reaction of octahedral Lindqvist-type polyoxometalate [V2W4O19](4-) and truncated tetrahedral Keggin-type [epsilon-Al13O4(OH)24-H2O)(12)](7+) cluster ions. The crystal structure shows that the oppositely charged cluster ions are arranged alternately and have their contacting faces parallel to each other for maximal interactions, both electrostatic and hydrogen bonding. The face-to-face interaction mode of the clusters allows analysis of the crystal structure in an analogy to the bond directionality of conventional inorganic crystals. Therefore, the packing of clusters in 1 is that of As2O3 (Claudetite-II). With the bond directionality, the crystal has large one-dimensional channels with a cross-sectional area of 14.17 x 13.88 A(2) that are filled by lattice water and charge-balancing OH-.  相似文献   

20.
Li J  Tao J  Huang RB  Zheng LS 《Inorganic chemistry》2012,51(11):5988-5990
Two 3D coordination polymers, [Co(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(18)(H(2)O)(6)]·(DMSO)(6)(EtOH)(6)(H(2)O)(36) (1·guests, ip = isophthalate) and [Ni(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(12)(H(2)O)(12)]·(DMSO)(6)(EtOH)(6)(H(2)O)(20) (2·guests), constructed with nanosized tetraicosanuclear Co(II) and Ni(II) wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号