首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
An edge-coloured graph G is called properly connected if any two vertices are connected by a path whose edges are properly coloured. The proper connection number of a connected graph G, denoted by pc(G), is the smallest number of colours that are needed in order to make G properly connected. Our main result is the following: Let G be a connected graph of order n and k2. If |E(G)|n?k?12+k+2, then pc(G)k except when k=2 and G{G1,G2}, where G1=K1(2K1+K2) and G2=K1(K1+2K2).  相似文献   

3.
4.
5.
This paper considers a degree sum condition sufficient to imply the existence of k vertex-disjoint cycles in a graph G. For an integer t1, let σt(G) be the smallest sum of degrees of t independent vertices of G. We prove that if G has order at least 7k+1 and σ4(G)8k?3, with k2, then G contains k vertex-disjoint cycles. We also show that the degree sum condition on σ4(G) is sharp and conjecture a degree sum condition on σt(G) sufficient to imply G contains k vertex-disjoint cycles for k2.  相似文献   

6.
Let G be a finite group, written multiplicatively. The Davenport constant of G is the smallest positive integer D(G) such that every sequence of G with D(G) elements has a non-empty subsequence with product 1. Let D2n be the Dihedral Group of order 2n and Q4n be the Dicyclic Group of order 4n. Zhuang and Gao (2005) showed that D(D2n)=n+1 and Bass (2007) showed that D(Q4n)=2n+1. In this paper, we give explicit characterizations of all sequences S of G such that |S|=D(G)?1 and S is free of subsequences whose product is 1, where G is equal to D2n or Q4n for some n.  相似文献   

7.
In this paper, we show that for any fixed integers m2 and t2, the star-critical Ramsey number r1(K1+nKt,Km+1)=(m?1)tn+t for all sufficiently large n. Furthermore, for any fixed integers p2 and m2, r1(Kp+nK1,Km+1)=(m?1+o(1))n as n.  相似文献   

8.
Let G be a balanced bipartite graph of order 2n4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In 1963, Moon and Moser proved that if σ1,1(G)n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon–Moser condition also implies the existence of a 2-factor with exactly k cycles for sufficiently large graphs. In order to prove this, we also give a σ1,1 condition for the existence of k vertex-disjoint alternating cycles with respect to a chosen perfect matching in G.  相似文献   

9.
10.
Let G be a graph of order n3. An even squared Hamiltonian cycle (ESHC) of G is a Hamiltonian cycle C=v1v2vnv1 of G with chords vivi+3 for all 1in (where vn+j=vj for j1). When n is even, an ESHC contains all bipartite 2-regular graphs of order n. We prove that there is a positive integer N such that for every graph G of even order nN, if the minimum degree is δ(G)n2+92, then G contains an ESHC. We show that the condition of n being even cannot be dropped and the constant 92 cannot be replaced by 1. Our results can be easily extended to even kth powered Hamiltonian cycles for all k2.  相似文献   

11.
12.
Let G be a k-connected graph of order n. In [1], Bondy (1980) considered a degree sum condition for a graph to have a Hamiltonian cycle, say, to be covered by one cycle. He proved that if σk+1(G)>(k+1)(n?1)/2, then G has a Hamiltonian cycle. On the other hand, concerning a degree sum condition for a graph to be covered by two cycles, Enomoto et al. (1995) [4] proved that if k=1 and σ3(G)n, then G can be covered by two cycles. By these results, we conjecture that if σ2k+1(G)>(2k+1)(n?1)/3, then G can be covered by two cycles. In this paper, we prove the case k=2 of this conjecture. In fact, we prove a stronger result; if G is 2-connected with σ5(G)5(n?1)/3, then G can be covered by two cycles, or G belongs to an exceptional class.  相似文献   

13.
In this article, we prove that the compact simple Lie groups SU(n) for n6, SO(n) for n7, Sp(n) for n3, E6,E7,E8, and F4 admit left-invariant Einstein metrics that are not geodesic orbit. This gives a positive answer to an open problem recently posed by Nikonorov.  相似文献   

14.
15.
16.
Let Δ(T) and μ(T) denote the maximum degree and the Laplacian spectral radius of a tree T, respectively. In this paper we prove that for two trees T1 and T2 on n(n21) vertices, if Δ(T1)>Δ(T2) and Δ(T1)?11n30?+1, then μ(T1)>μ(T2), and the bound “Δ(T1)?11n30?+1” is the best possible. We also prove that for two trees T1 and T2 on 2k(k4) vertices with perfect matchings, if Δ(T1)>Δ(T2) and Δ(T1)?k2?+2, then μ(T1)>μ(T2).  相似文献   

17.
18.
19.
For i=2,3 and a cubic graph G let νi(G) denote the maximum number of edges that can be covered by i matchings. We show that ν2(G)45|V(G)| and ν3(G)76|V(G)|. Moreover, it turns out that ν2(G)|V(G)|+2ν3(G)4.  相似文献   

20.
Let S be a set of at least two vertices in a graph G. A subtree T of G is a S-Steiner tree if S?V(T). Two S-Steiner trees T1 and T2 are edge-disjoint (resp. internally vertex-disjoint) if E(T1)E(T2)=? (resp. E(T1)E(T2)=? and V(T1)V(T2)=S). Let λG(S) (resp. κG(S)) be the maximum number of edge-disjoint (resp. internally vertex-disjoint) S-Steiner trees in G, and let λk(G) (resp. κk(G)) be the minimum λG(S) (resp. κG(S)) for S ranges over all k-subset of V(G). Kriesell conjectured that if λG({x,y})2k for any x,yS, then λG(S)k. He proved that the conjecture holds for |S|=3,4. In this paper, we give a short proof of Kriesell’s Conjecture for |S|=3,4, and also show that λk(G)1k?1k?2 (resp. κk(G)1k?1k?2 ) if λ(G)? (resp. κ(G)?) in G, where k=3,4. Moreover, we also study the relation between κk(L(G)) and λk(G), where L(G) is the line graph of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号