首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reactions of Ti(NMe(2))(2)Cl(2) with a wide range of primary alkyl and arylamines RNH(2) afforded the corresponding 5-coordinate imido titanium compounds Ti(NR)Cl(2)(NHMe(2))(2) (R = (t)Bu (1), (i)Pr (2), CH(2)Ph (3), Ph (4), 2,6-C(6)H(3)Me(2) (5), 2,6-C(6)H(3)(i)Pr(2) (6), 2,4,6-C(6)H(2)F(3) (7), 2,3,5,6-C(6)HF(4) (8), C(6)F(5) (9), 4-C(6)H(4)Cl (10), 2,3,5,6-C(6)HCl(4) (11), 2-C(6)H(4)CF(3) (12), 2-C(6)H(4)(t)Bu (13)). The compounds 1-13 are monomeric in solution but in the solid state form either N-H...Cl hydrogen bonded dimers or chains or perfluorophenyl pi-stacked chains, depending on the imido R-group. The compound 13 was also prepared in a "one-pot" synthesis from RNH(2) and Ti(NMe(2))(4) and Me(3)SiCl. Reaction of certain Ti(NR)Cl(2)(NHMe(2))(2) compounds with an excess of pyridine afforded the corresponding bis- or tris-pyridine analogues [Ti(NR)Cl(2)(py)(x)](y) (x = 3, y = 1; x = y = 2), and the structure of Ti(2)(NC(6)F(5))(2)Cl(2)(mu-Cl)(2)(py)(4) shows pi-stacking of perfluorophenyl rings. Reaction of Ti(NMe(2))(2)Cl(2) with cross-linked aminomethyl polystyrene gave quantitative conversion to the corresponding solid-supported titanium imido complex. This paper represents the first detailed study of how supramolecular structures of imido compounds may be influenced by simple variation of the imido ligand N-substituent.  相似文献   

2.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

3.
The interaction of dimethyldiaminosilane ligands of general formula SiMe2(NR2)(NR'2)(NR2, NR'2 = NiHPr, NHtBu, NC4H8, NHCH2CH2NMe2) with AlX3 (X = Cl, Me) has been investigated and the synthesis of novel aluminium derivatives is reported, namely AlMe3[SiMe2(NR2)(NR'2)], AlX2[SiMe2(NR)(NR'2)] and AlMe[SiMe2(NR)2], containing the silane ligand as neutral, monoanionic and dianionic species, respectively. Moreover, the solution molecular structures and dynamics have been elucidated via 1D/2D variable temperature NMR spectroscopy showing the influence of the N-substituents of the silane ligand and of the aluminium ancillary ligands.  相似文献   

4.
The syntheses of tantalum derivatives with the potentially tridentate diamido-N-heterocyclic carbene (NHC) ligand are described. Aminolysis and alkane elimination reactions with the diamine-NHC ligands, (Ar)[NCN]H(2) (where (Ar)[NCN]H(2) = (ArNHCH(2)CH(2))(2)(C(3)N(2)); Ar = Mes, p-Tol), provided complexes with a bidentate amide-amine donor configuration. Attempts to promote coordination of the remaining pendent amine donor were unsuccessful. Metathesis reactions with the dilithiated diamido-NHC ligand ((Ar)[NCN]Li(2)) and various Cl(x)Ta(NR'(2))(5-)(x) precursors were successful and generated the desired octahedral (Ar)[NCN]TaCl(x)(NR'(2))(3-)(x) complexes. Attempts to prepare trialkyl tantalum complexes by this methodology resulted in the formation of an unusual metallaaziridine derivative. DFT calculations on model complexes show that the strained metallaaziridine ring forms because it allows the remaining substituents to adopt preferable bonding positions. The calculations predict that the lowest energy pathway involves a tantalum alkylidene intermediate, which undergoes C-H bond activation alpha to the amido to form the metallaaziridine moiety. This mechanism was confirmed by examining the distribution of deuterium atoms in an experiment between (Mes)[NCN]Li(2) and Cl(2)Ta(CD(2)Ph)(3). The single-crystal X-ray structures of (p)(-Tol)[NCNH]Ta(NMe(2))(4) (3), (Mes)[NCNH]Ta=CHPh(CH(2)Ph)(2) (4), (p)(-Tol)[NCN]Ta(NMe(2))(3) (7), (Mes)[NCCN]Ta(CH(2)(t)Bu)(2) (11), and (Mes)[NCCN]TaCl(CH(2)(t)Bu) (14) are included.  相似文献   

5.
The reaction of 1,1-diphenylhydrazine with Ti(NMe2)2Cl2 produced the monomeric terminal titanium hydrazido(2-) species Ti(NNPh2)Cl2(HNMe2)2 (1) in near-quantitative yield. The reaction of Ti(NMe2)2Cl2 with the less sterically demanding ligand precursors 1,1-dimethylhydrazine or N-aminopiperidine gave the dimeric mu-eta2,eta1-bridged compounds Ti2(mu-eta2,eta1-NNMe2)2Cl4(HNMe2)2 (2) and Ti2[mu-eta2,eta1-NN(CH2)5]2Cl4(HNMe2)3 (3). The X-ray structures of 2 and 3 showed the formation of N-H...Cl hydrogen bonded dimers or chains, respectively. The reaction of 1 with an excess of pyridine formed [Ti(NNPh2)Cl2(py)2]n (4, n = 1 or 2). The reaction of the tert-butyl imido complex Ti(N(t)Bu)Cl2(py)3 with either 1,1-dimethylhydrazine or N-aminopiperidine again resulted in the formation of hydrazido-bridged dimeric complexes, namely Ti2(mu-eta2,eta1-NNMe2)2Cl4(py)2 (5, structurally characterized) and Ti2[mu-eta2,eta1-NN(CH2)5]2Cl4(py)2 (6). Compounds 1 and 4 are potential new entry points into terminal hydrazido(2-) chemistry of titanium. Compound 1 reacted with neutral fac-N3 donor ligands to form Ti(NNPh2)Cl2(Me3[9]aneN3) (7), Ti(NNPh2)Cl2(Me3[6]aneN3) (8), Ti(NNPh2)Cl2[HC(Me2pz)3] (9, structurally characterized), and Ti(NNPh2)Cl2[HC(n)Bupz)3] (10) in good yields (Me3[9]aneN3 = trimethyl-1,4,7-triazacyclononane, Me3[6]aneN3 = trimethyl-1,3,5-triazacyclohexane, HC(Me2pz)3 = tris(3,5-dimethylpyrazolyl)methane, and HC((n)Bupz)3 = tris(4-(n)butylpyrazolyl)methane). DFT calculations were performed on both the model terminal hydrazido compound Ti(NNPh2)Cl2[HC(pz)3] (I) and the corresponding imido compounds Ti(NMe)Cl2[HC(pz)3] (II) and Ti(NPh)Cl2[HC(pz)3] (III). The NNPh2 ligand binds to the metal center in an analogous manner to that of terminal imido ligands (metalligand triple bond), but with one of the Ti=N(alpha) pi components significantly destabilized by a pi interaction with the lone pair of the N(beta) atom. The NR ligand sigma donor ability was found to be NMe > NPh > NNPh2, whereas the overall (sigma + pi) donor ability is NMe > NNPh2 > NPh, as judged by fragment orbital populations, Ti-N atom-atom overlap populations, and fragment-charge analysis. DFT calculations on the hydrazido ligand in a mu-eta2,eta1-bridging mode showed involvement of the N=N pi electrons in donation to one of the Ti centers. This TiN2 interaction is best represented as a metallocycle.  相似文献   

6.
Pentacoordinate silicon fluorides L(1)SiF(3) (2a), L(2)SiF(3) (2b), and (L(3)SiF(2))(2) (2c)(2) based on amidinate (L(1) = PhC(N(t)Bu)(2)), guanidinate (L(2) = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate), and triazapentadienate (L(3) = NC(NMe(2))NC(NMe(2))NAr; Ar = 2,6-(i)Pr(2)C(6)H(3)) ligands were prepared by fluorination of the corresponding chlorosilanes L(1)SiCl(3) (1a), L(2)SiCl(3) (1b), and L(3)SiCl(2) (1c) with Me(3)SnF at ambient temperature. Compounds 1b, 1c, 2a, 2b, and (2c)(2) were characterized by (1)H, (13)C, (19)F, and (29)Si NMR spectroscopic studies. Molecular structures of 1b, 1c, 2a, and (2c)(2) were determined by single crystal X-ray structural analysis. Invariom refinement involving non-spherical scattering factors of the Hansen-Coppens multipole model was performed for 1b. Compound L(3)SiF(2) (2c) is dimeric both in the solid state and in solution, whereas its chloro-analogue 1c is monomeric. The attempted synthesis of diamidinatotetrachlorodisilane by reaction of lithium amidinate with Si(2)Cl(6) led to the formation of the silane (1a) and the silylene L(1)SiCl (3). Reaction of Si(2)Cl(6) with N-heterocyclic carbenes (NHC) afforded NHC adducts of dichlorosilylene and SiCl(4). A one pot method for the preparation of base-stabilized silylenes from Si(2)Cl(6) is discussed.  相似文献   

7.
The use of an amino-oxazolinate (NN(ox) = kappa2-2,6-dimethylphenylamido-4(S)-isopropyloxazoline) as a chiral analogue to amidinate ligands in the chemistry of titanium was found to lead to undesired side reactions. The reaction of 2,6-dimethylphenylamido-4(S)-isopropyloxazoline with [Ti(NMe2)4] afforded the bis(amidinato) complex [Ti(NN(ox))2(NMe2)2] (2) which was thermally converted to the ring-opened decomposition products [Ti(NN(ox)){kappa3-N(2,6-C6H3Me2)C(NMe2)NC(iPr)CH2O}(NMe2)] (3) and [Ti{kappa3-N(2,6-C6H3Me2)C(NMe2)-NC(iPr)CH2O}2] (4). The NMR spectra of 4 recorded at low temperature displayed two sets of resonances corresponding to two symmetric isomers in a 2:5 ratio, the probable geometries of which were established by ONIOM (QM/MM) simulations. To suppress ring opening of the oxazolines, their oxygen atom was formally replaced by a CH2 group in the synthesis of a series of amino-pyrroline protioligands 2-RN(H)(5-C4H5NR') (HN(R)N(R')). Their reaction with [Ti(NMe2)4] gave the thermally stable complexes [Ti(N(R)N(R'))2(NMe2)2], of which three derivatives were characterized by X-ray diffraction. They are stereochemically dynamic and undergo reversible ligand rearrangements in solution, for which the activation parameters were determined by variable-temperature (1)H NMR spectroscopy.  相似文献   

8.
One-pot reactions of V(NMe2)4 with a range of primary alkyl- and arylamines RNH2 and Me3SiCl afforded the corresponding five-coordinate vanadium(4+) imido compounds V(NR)Cl2(NHMe2)2 [R = 2,6-C6H3(i)Pr2 (1a, previously reported), 2-C6H4(t)Bu (1b), 2-C6H4CF3 (1c), (t)Bu (1d), Ad (Ad = adamantyl, 1e)]. The crystal structures of 1b (two diamorphic forms) and 1c featured N-H...Cl hydrogen-bonded chains. Reaction of 1a-e with the neutral face-capping, N3 donor ligands TACN (TACN = 1,4,7-trimethyltriazacyclononane) or TPM [TPM = tris(3,5-dimethylpyrazolyl)methane] gave the corresponding six-coordinate complexes V(NR)(TACN)Cl2 (2a-e) and V(NR)(TPM)Cl2 (3a-e). The X-ray structures of 2b, 2c, 2d, 3b, 3c, and 3e were determined. When activated with methylaluminoxane, certain of the complexes V(NR)(TPM)Cl2 (3) formed moderately active ethylene polymerization catalysts, whereas none of the compounds V(NR)(TACN)Cl2 (2) were active.  相似文献   

9.
A series of heteroleptic beta-diketiminate-stabilised calcium amides of the form [{ArNC(Me)CHC(Me)NAr}Ca{NR(1)R(2)}(THF)] (Ar = 2,6-diisopropylphenyl; R(1) = H, R(2) = Ar; R(1) = H, R(2) = CH(2)CH(2)OMe; R(1) = R(2) = Ph) react with 1,3-dialkylcarbodiimides, R(3)N[double bond, length as m-dash]C[double bond, length as m-dash]NR(3) (R(3) = Cy, (i)Pr), to yield the corresponding insertion products [{ArNC(Me)CHC(Me)NAr}Ca{(R(3)N)(2)CNR(1)R(2)}(THF)] at room temperature in hydrocarbon solutions. These latter compounds contain both beta-diketiminate and guanidinate ligands bound to calcium. Solid-state data are consistent with the guanidinate ligands adopting a number of binding modes including kappa(2) through kappa(3) coordination, with varying degrees of delocalisation of the non-bound guanidinate nitrogen lone-pair across the pi-framework of the ligand. DFT computational studies have been conducted to address these variations in coordination behaviour.  相似文献   

10.
Reaction of Me(4)DACH (6-dimethylamino-1,4,6-trimethyl-1,4-diazacycloheptane) with Ti(N(t)Bu)Cl(2)(py)(3) or Ti(N(t)Bu)Cl(2)(NHMe(2))(2) gave Ti(N(t)Bu)(Me(4)DACH)Cl(2) (1) which in CD(2)Cl(2) solution exists as a mixture of trans and cis isomers (defined with respect to the imido ligand and the exocyclic NMe(2) donor of Me(4)DACH). Aryl imido analogues of 1 were prepared from Ti(NAr)Cl(2)(NHMe(2))(2) and Me(4)DACH forming Ti(NAr)(Me(4)DACH)Cl(2) (Ar = 2,6-C(6)H(3)Me(2) (2), 2,6-C(6)H(3)(i)Pr(2) (3), 2-C(6)H(4)(t)Bu (4), 2-C(6)H(4)CF(3) (5)) which also exist as isomers in solution. The activation parameters for the interconversion of trans- and cis-3were measured by VT NMR spectroscopy. The solid state structures of trans-1, 3 and and cis-2 have been determined. In the presence of MAO or dried MAO the compounds 1-5 act as moderatley productive ethylene polymerisation catalysts, with a modest productivity gain found on moving from the 1/MAO to 1/dried MAO catalyst system.  相似文献   

11.
We report a combined experimental and computational comparative study of the reactions of the homologous titanium dialkyl- and diphenylhydrazido and imido compounds Cp*Ti{MeC(N(i)Pr)(2)}(NNR(2)) (R = Me (1) or Ph (2)) and Cp*Ti{MeC(N(i)Pr)(2)}(NTol) (3) with silanes, halosilanes, alkyl halides and [Et(3)NH][BPh(4)]. Compound 1 underwent reversible Si-H 1,2-addition to Ti=N(α) with RSiH(3) (experimental ΔH ca. -17 kcal mol(-1)), and irreversible addition with PhSiH(2)X (X = Cl, Br). DFT found that the reaction products and certain intermediates were stabilised by β-NMe(2) coordination to titanium. The Ti-D bond in Cp*Ti{MeC(N(i)Pr)(2)}(D){N(NMe(2))SiD(2)Ph} underwent σ-bond metathesis with BuSiH(3) and H(2). Compound 1 reacted with RR'SiCl(2) at N(α) to transfer both Cl atoms to Ti; 2 underwent a similar reaction. Compound 3 did not react with RSiH(3) or alkyl halides but formed unstable Ti=N(α) 1,2-addition or N(α) protonation products with PhSiH(2)X or [Et(3)NH][BPh(4)]. Compound 1 underwent exclusive alkylation at N(β) with RCH(2)X (R = H, Me or Ph; X = Br or I) whereas protonation using [Et(3)NH][BPh(4)] occurred at N(α). DFT studies found that in all cases electrophile addition to N(α) (with or without NMe(2) chelation) was thermodynamically favoured compared to addition to N(β).  相似文献   

12.
A mixture of the tungsten allylimido complexes Cl(4)(RCN)W(NC(3)H(5)) (3a, R = CH(3) and 3b, R = Ph) was tested as a single-source precursor for growth of tungsten nitride (WN(x)) or carbonitride (WN(x)C(y)) thin films. Films deposited from 3a,b below 550 degrees C contained amorphous beta-WN(x)C(y), while those deposited at higher temperatures were polycrystalline. Film growth rates from 3a,b ranged from 5 to 10 A/min over a temperature range of 450-650 degrees C, and the apparent activation energy for film growth was 0.15 eV. A plot of the E(a) values for deposition from Cl(4)(RCN)W(NR') [R' = Ph, (i)Pr, allyl] against the N-C imido bond strengths for the analogous amines R'NH(2) is linear, implicating cleavage of the N-C bond as the rate-determining step in film growth. The correlation of mass spectral fragmentation patterns for Cl(4)(RCN)W(NR') with film properties such as nitrogen content supports the significance of facile N-C bond cleavage in film growth.  相似文献   

13.
The ligand exchange of guanidinate ligands between metal centres can play an important role in guanidinate chemistry, and ligand exchange between aluminium centres will form a dimeric intermediate. The synthesis and characterization of the dimer [Me(2)NC(N(i)Pr)(2)](2)Al(2)Cl(4) is reported here: compound crystallizes with a twisted boat conformation of its dimer ring. This compound decomposes to monomers at room temperature over four days, or within 18 hours at 90 degrees C. We undertook a detailed computational characterization of the reaction pathway, which supported the dimer structure and subsequent monomer formation. The ligand exchange route was also exploited for the synthesis of [MeC(N(i)Pr)(2)](2)AlCl, [EtC(N(i)Pr)(2)](2)AlCl, [MeC(N(i)Pr)(2)](2)GaCl, and [Me(2)NC(N(i)Pr)(2)](2)GaCl.  相似文献   

14.
The reactions of vinyl chloride (VC) with representative late metal, single-site olefin dimerization and polymerization catalysts have been investigated. VC coordinates more weakly than ethylene or propylene to the simple catalyst (Me(2)bipy)PdMe(+) (Me(2)bipy = 4,4'-Me(2)-2,2'-bipyridine). Insertion rates of (Me(2)bipy)Pd(Me)(olefin)(+) species vary in the order VC > ethylene > propylene. The VC complexes (Me(2)bipy)Pd(Me)(VC)(+) and (alpha-diimine)Pd(Me)(VC)(+) (alpha-diimine = (2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMeCMe[double bond]N(2,6-(i)Pr(2)[bond]C(6)H(3))) undergo net 1,2 VC insertion and beta-Cl elimination to yield Pd[bond]Cl species and propylene. Analogous chemistry occurs for (pyridine-bisimine)MCl(2)/MAO catalysts (M = Fe, Co; pyridine-bisimine = 2,6-[(2,6-(i)Pr(2)[bond]C(6)H(3))N[double bond]CMe](2)-pyridine) and for neutral (sal)Ni(Ph)PPh(3) and (P[bond]O)Ni(Ph)PPh(3) catalysts (sal = 2-[C(H)[double bond]N(2,6-(i)Pr(2)-C(6)H(3))]-6-Ph-phenoxide; P[bond]O = [Ph(2)PC(SO(3)Na)[double bond]C(p-tol)O]), although the initial metal alkyl VC adducts were not detected in these cases. These results show that the L(n)MCH(2)CHClR species formed by VC insertion into the active species of late metal olefin polymerization catalysts undergo rapid beta-Cl elimination which precludes VC polymerization. Termination of chain growth by beta-Cl elimination is the most significant obstacle to metal-catalyzed insertion polymerization of VC.  相似文献   

15.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

16.
The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.  相似文献   

17.
The synthesis and molecular and electronic structures of the first tert-butoxyimido complexes of titanium (TiNO(t)Bu functional group) are reported, featuring a variety of mono- or poly-dentate, neutral or anionic N-donor ligands. Reaction of Ti(NMe(2))(2)Cl(2) with (t)BuONH(2) gave good yields of Ti(NO(t)Bu)Cl(2)(NHMe(2))(2) (1). Compound 1 serves as an excellent entry point into new tert-butoxyimido complexes by reaction with a variety of fac-N(3) donor ligands, namely, Me(3)[9]aneN(3) (trimethyl-1,4,7-triazacyclononane), HC(Me(2)pz)(3) (tris(3,5-dimethylpyrazolyl)methane), or Me(3)[6]aneN(3) (trimethyl-1,3,5-triazacyclohexane) to give Ti(NO(t)Bu)(Me(3)[9]aneN(3))Cl(2) (2), Ti(NO(t)Bu){HC(Me(2)pz)(3)}Cl(2) (3), or Ti(NO(t)Bu)(Me(3)[6]aneN(3))Cl(2) (4) in good yield. It was found that 4 could be converted into Ti(NO(t)Bu)Cl(2)(py)(3) (5) in very good yield by reaction with an excess of pyridine. Compound 5 is effective in a range of salt metathesis reactions with lithiated amide or pyrrolide ligands, and reacts with Li(2)N(2)N(py), Li(2)N(2)N(Me), LiN(pyr)N(Me(2)), or Li(2)N(2)(pyr)N(Me) to give Ti(N(2)N(py))(NO(t)Bu)(py) (6), Ti(N(2)N(Me))(NO(t)Bu)(py) (7), Ti(N(pyr)N(Me(2)))(NO(t)Bu)Cl(py)(2) (9), or Ti(N(2)(pyr)N(Me))(NO(t)Bu)(py)(2) (10) in moderate to good yields (N(2)N(py) = (2-NC(5)H(4))C(Me)(CH(2)NSiMe(3))(2); N(2)N(Me) = MeN(CH(2)CH(2)NSiMe(3))(2); N(pyr)N(Me(2)) = Me(2)NCH(2)(2-NC(4)H(3)); N(2)(pyr)N(Me) = MeN{CH(2)(2-NC(4)H(3))}(2)). Compounds 7, 9, and 10 reacted with 2,2'-bipyridyl by pyridine exchange reactions forming Ti(N(2)N(Me))(NO(t)Bu)(bipy) (8), Ti(N(pyr)N(Me(2)))(NO(t)Bu)Cl(bipy) (11), and Ti(N(2)(pyr)N(Me))(NO(t)Bu)(bipy) (12). Ten tert-butoxyimido compounds, namely, 1-6, 11, and 12, have been structurally characterized revealing approximately linear Ti-N-O(t)Bu linkages with Ti-N distances [range 1.686(2)-1.734(2) ?] that are generally intermediate between those in the homologous alkylimido and phenylimido analogues, and shorter than in the diphenylhydrazido counterparts. Density functional theory (DFT) studies on the model compounds Ti(NR)Cl(2)(NHMe(2))(2) (1_R; R = OMe, Me, Ph, NMe(2)) confirmed this trend and found that the destabilizing effect of the -OMe oxygen 2p(π) lone pair on one of the Ti-N π-bonds in 1_OMe is comparable to that of the occupied phenyl ring π orbitals in the phenylimido homologue 1_Ph but much less than for the -NMe(2) nitrogen lone pair in 1_NMe(2).  相似文献   

18.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

19.
The compounds M(2)(O(2)CMe)(4) and the lithium amidinates Li[(N(i)Pr)(2)CR] react to give the new compounds trans-M(2)(O(2)CMe)(2)[(N(i)Pr)(2)CR](2) where M = Mo or W and R = Me (M = Mo only), -C[triple bond]C(t)Bu, -C[triple bond]CPh and -C[triple bond]C-Fc where Fc = 1-ferrocenyl. The limitations of this type of reaction are described based on steric considerations together with the preparation and characterization of the compound Mo(2)(micro-O(2)C-9-anthracene)(2)[eta(2)-(N(i)Pr)(2)CMe](2). The electronic structures of the bis-amidinate-bis-carboxylate M(2) complexes are described based on model compounds employing density functional theory and are correlated with the experimental observations of their physicochemical properties and in particular their observed electronic absorption spectra which show intense MLCT absorption bands. Preliminary studies of the reactions of these bis-amidinate-bis-carboxylate complexes in the preparation of 1-D oligomers are also described along with the preparation and molecular structures of the compounds [Li(N(i)Pr)(2)CR.THF](2) where R = 2-thienyl or -C[triple bond]C-Ph. The kinetic lability of these new M(2)-containing compounds toward ligand exchange is also noted.  相似文献   

20.
Three dimeric vanadium(I) β-diketiminates [V{μ-(η(6)-ArN)C(Me)CHC(Me)C(N-Ar)}](2) (Ar = 2,6-Me(2)C(6)H(3) (2), 2,6-Et(2)C(6)H(3) (3), 9-anthracenyl (4)) were prepared and isolated upon reduction of their corresponding dichloro precursors VCl(2)(Nacnac). Compounds 2-4 all show a structure with each vanadium atom being η(2) bonded to the β-diketiminate framework and η(6) bonded to a flanking ring of a β-diketiminato ligand, attached to the other vanadium centre within the dimer. No metal-metal bonding interactions are observed in these dimers due to long vanadium-vanadium separations. Compounds 2-4 display an antiferromagnetic exchange between the two vanadium centres. An imido azabutadienyl complex (η(2)-PhCC(H)C(Ph)NC(6)H(3)-2,6-(i)Pr(2))VN(C(6)H(3)-2,6-(i)Pr(2))(OEt(2)) (5) was isolated from the reduction of VCl(2)(HC(C(Ph)NC(6)H(3)-2,6-(i)Pr(2))(2)) by KC(8). Compounds 2-4 and the inverted-sandwich divanadium complex (μ-η(6):η(6)-C(6)H(5)Me)[V(HC(C(Me)NC(6)H(3)-2,6-(i)Pr(2))(2))](2) (1) reduce Ph(2)S(2) to give two vanadium dithiolates V(SPh)(2)[(HC(C(Me)NC(6)H(3)-2,6-R(2))(2))] (R = Et (6), (i)Pr (7)) through an oxidative addition. Most notably, 1 and 3 catalyze the cyclotrimerization of alkynes, giving tri-substituted benzenes in good yields and a 1,3,5-triphenylbenzene coordinated intermediate 8 was isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号