首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Plane surface wave diffraction by a floating semi-infinite plate is studied. An analytic solution of the problem is constructed by the Wiener-Hopf technique. Analytic formulas for the reflection and transmission coefficients and their shortwave and longwave asymptotics are obtained. An explicit representation for the fluid velocity potential is found. The displacement, strain, and pressure distributions over the plate are investigated as functions of a dimensionless parameter, namely, the reduced rigidity of the plate, and the asymptotic distribution is studied for long and short waves.  相似文献   

2.
We have discovered a forerunning mode transition as the periodic wave changing the state of a uniform continuous waveguide. The latter is represented by an elastic beam initially rested on an elastic foundation. Under the action of an incident sinusoidal wave, the separation from the foundation occurs propagating in the form of a transition wave. The critical displacement is the separation criterion. Under these conditions, the steady-state mode exists with the transition wave speed independent of the incident wave amplitude. We show that such a regime exists only in a bounded domain of the incident wave parameters. Outside this domain, for higher amplitudes, the steady-state mode is replaced by a set of local separation segments periodically emerging at a distance ahead of the main transition point. The crucial feature of this waveguide is that the incident wave group speed is greater than the phase speed. This allows the incident wave to deliver the energy required for the separation. The analytical solution allows us to show in detail how the steady-state mode transforms into the forerunning one. The latter studied numerically turns out to be periodic. As the incident wave amplitude grows the period decreases, while the transition wave speed averaged over the period increases to the group velocity of the wave. As an important part of the analysis, the complete set of solutions is presented for the waves excited by the oscillating or/and moving force acting on the free beam. In particular, an asymptotic solution is evaluated for the resonant wave corresponding to a certain relation between the load's speed and frequency.  相似文献   

3.
We present an asymptotic algorithm for analysis of a singularly perturbed problem in a domain containing an interfacial crack. The crack is assumed to be flat and its front, initially straight, is perturbed in the plane containing the crack. The aim of the work is to determine the asymptotic representation of the stress-intensity factors near the edge of the crack. Mathematically, the limit problem is reduced to the analysis of a matrix, 3×3, Wiener-Hopf problem, and its solution generates the “weight matrix-function” characterised by a special singular solution near the crack edge. The two-term asymptotic representation for the weight function components is required by the asymptotic algorithm, together with two-term asymptotics for stress components associated with the physical fields near the edge of the crack. The particular feature of the solution is the coupling between the normal opening mode (Mode-I), and the shear modes (Mode-II and Mode-III), and the oscillatory behaviour of certain stress components near the crack edge. Explicit asymptotic formulae for the stress-intensity factors are obtained at the edge of a “wavy crack” at an interface.  相似文献   

4.
Some exact expressions are derived to describe the temporal evolution of forced Rossby waves in a two-dimensional beta-plane configuration where the background flow has constant zonal-mean velocity. The meridional length scale of the problem is assumed to be small relative to the zonal length scale and so the long-wave limit of zero aspect ratio is taken. In the case where the background flow velocity is zero, an exact solution is obtained in terms of generalized hypergeometric functions. A late-time asymptotic approximation is obtained and it shows that the solution oscillates with time and its amplitude goes to zero in the limit of infinite time. In the case of a non-zero background flow velocity, the solution is evaluated using two different procedures which give two equivalent expressions in terms of different generalized hypergeometric functions. The late-time asymptotic behaviour is investigated and it is found that the solution approaches a steady state in the limit of infinite time.We also derive a solution in the form of an asymptotic series expansion for the more general situation where a Rossby wave packet is generated by a zonally-localized boundary condition comprising a continuous spectrum of wavenumbers or Fourier modes. The exact solutions found here can be used as leading-order solutions in weakly-nonlinear analyses and other studies involving more realistic configurations for time-dependent Rossby waves or wave packets.  相似文献   

5.
《Wave Motion》2014,51(1):86-99
An efficient numerical method to compute solitary wave solutions to the free surface Euler equations is reported. It is based on the conformal mapping technique combined with an efficient Fourier pseudo-spectral method. The resulting nonlinear equation is solved via the Petviashvili iterative scheme. The computational results are compared to some existing approaches, such as Tanaka’s method and Fenton’s high-order asymptotic expansion. Several important integral quantities are computed for a large range of amplitudes. The integral representation of the velocity and acceleration fields in the bulk of the fluid is also provided.  相似文献   

6.
One-dimensional traveling wave solutions for imbibition processes into a homogeneous porous medium are found within a recent generalized theory of macroscopic capillarity. The generalized theory is based on the hydrodynamic differences between percolating and nonpercolating fluid parts. The traveling wave solutions are obtained using a dynamical systems approach. An exhaustive study of all smooth traveling wave solutions for primary and secondary imbibition processes is reported here. It is made possible by introducing two novel methods of reduced graphical representation. In the first method the integration constant of the dynamical system is related graphically to the boundary data and the wave velocity. In the second representation the wave velocity is plotted as a function of the boundary data. Each of these two graphical representations provides an exhaustive overview over all one-dimensional and smooth solutions of traveling wave type, that can arise in primary and secondary imbibition. Analogous representations are possible for other systems, solution classes, and processes.  相似文献   

7.
This paper presents a simplified frequency equation and its approximate solution to predict the modal frequencies of a beam with an incipient crack. The physical implication of the simplified frequency equation is fully described from a wave perspective for the cracked beam with arbitrary support conditions. The approximate solution of the proposed frequency equation is derived from a wave perspective as well. The asymptotic equivalence is demonstrated between the approximate solution and that obtained by the first order perturbation method as the mode number increases. The validity of the proposed approach is demonstrated through comparison to both numerical results from finite element analysis and experimental data.  相似文献   

8.
The linearized Wagner theory is used to describe the initial stage of the penetration of an elliptic paraboloid on the crest of a regular wave. It is shown that the asymptotic solution for small wave steepness and large enough radii of curvature of the body is obtained from a slight modification of the standard impact problem without a wave. In practice the boundary value problem is formulated for a fictitious elliptic paraboloid: its radii of curvature are modified compared to the actual ones and its kinematics of penetration makes mainly a horizontal velocity appear due to the velocity of the propagating crest.To validate the present approach, an experimental campaign is carried out. The combined choice of the wave parameters and the geometric characteristics of the body leads to a circular expanding wetted surface. The experimental data confirm the theoretical results. Comparisons made for the pressure and the force show a satisfactory agreement.  相似文献   

9.
We prove a representation formula for the solution of an initial-boundary value problem associated with the 3D time-dependent Oseen system. This formula involves the solution of an integral equation on the lateral boundary of the space-time cylinder. The key point of this article is that the assumptions on the data are chosen in such a way that the formula in question may be used in a theory of the asymptotic behaviour of solutions to the nonstationary 3D Navier–Stokes system with Oseen term (incompressible viscous flow in an exterior domain with nonzero velocity at infinity).  相似文献   

10.
It was shown in [1] that a parallel flow with an arbitrary nonconstant velocity profile is unstable for long-wavelength spatially periodic disturbances along the flow. The present paper shows that this instability leads to a supercritical natural oscillation mode of the simple wave type. This mode is calculated using the Lyapunov-Schmidt method in the form given in [2], along with the asymptotic curve of the wavelengths [1]. If the long wavelength disturbances are the most dangerous (this occurs, for example, when there is a sinusoidal velocity profile), then the natural oscillation mode is stable for spatially periodic disturbances having the same wavelength.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 32–35, January–February, 1973.  相似文献   

11.
The plane-strain problem of a stress pulse striking an elastic circular cylindrical inclusion embedded in an infinite elastic medium is treated. The method used determines dominant stress singularities that arise at wave fronts from the focusing of waves refracted into the interior. It is found that a necessary and sufficient condition for the existence of a propagating stress singularity is that the incident pulse has a step discontinuity at its front. The asymptotic wave front behavior of the first few P and SV waves to focus are determined explicitly and it is shown that the contribution from other waves are less important. In the exterior, it is found that in most composite materials the reflected waves have a singularity at their wave front which depends on the angle of reflection. Also the wave front behavior of the first few singular transmitted waves is given explicitly.The analysis is based on the use of a Watson-type lemma, developed here, and Friedlander's method [5]. The lemma relates the asymptotic behavior of the solution at the wave front to the asymptotic behavior of its Fourier transform on time for large values of the transform parameter. Friedlander's method is used to represent the solution in terms of angularly propagating wave forms. This method employs integral transforms on both time and θ, the circumferential coordinate. The θ inversion integral is asymptotically evaluated for large values of the time transform parameter by use of appropriate asymptotics for Bessel and Hankel functions and the method of stationary phase. The Watson-type lemma is then used to determine the behavior of the solution at singular wave fronts.The Watson-type lemma is generally applicable to problems which involve singular loadings or focusing in which wave front behavior is important. It yields the behavior of singular wave fronts whether or not the singular wave is the first to arrive. This application extends Friedlander's method to an interior region and physically interprets the resulting representation in terms of ray theory.  相似文献   

12.
The turbulence modeling in probability density function (PDF) methods is studied through applications to turbulent swirling and nonswirling co-axial jets and to the temporal shear layer. The PDF models are formulated at the level of either the joint PDF of velocity and turbulent frequency or the joint PDF of velocity, wave vector, and turbulent frequency. The methodology of wave vector models (WVMs) is based on an exact representation of rapidly distorted homogeneous turbulence, and several models are constructed in a previous paper [1]. A revision to a previously presented conditional-mean turbulent frequency model [2] is constructed to improve the numerical implementation of the model for inhomogeneous turbulent flows. A pressure transport model is also implemented in conjunction with several velocity models. The complete model yields good comparisons with available experimental data for a low swirl case. The individual models are also assessed in terms of their significance to an accurate solution of the co-axial jets, and a comparison is made to a similar assessment for the temporal shear layer. The crucial factor in determining the quality of the co-axial jet simulations is demonstrated to be the proper specification of a parameter ratio in the modeled source of turbulent frequency. The parameter specification is also shown to be significant in the temporal shear layer.  相似文献   

13.
The propagation and interaction of hyperelastic cylindrical waves are studied. Nonlinearity is introduced by means of the Murnaghan potential and corresponds to the quadratic nonlinearity of all basic relationships. To analyze wave propagation, an asymptotic representation of the Hankel function of the first order and first kind is used. The second-order analytical solution of the nonlinear wave equation is similar to that for a plane longitudinal wave and is the sum of the first and second harmonics, with the difference that the amplitudes of cylindrical harmonics decrease with the distance traveled by the wave. A primary computer analysis of the distortion of the initial wave profile is carried out for six classical hyperelastic materials. The transformation of the first harmonic of a cylindrical wave into the second one is demonstrated numerically. Three ways of allowing for nonlinearities are compared __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 7, pp. 73–82, July 2005.  相似文献   

14.
A third-order Lagrangian asymptotic solution is derived for gravity–capillary waves in water of finite depth. The explicit parametric solution gives the trajectory of a water particle and the wave kinematics for Lagrangian points above the mean water level, and in a water column. The water particle orbits and mass transport velocity as functions of the surface tension are obtained. Some remarkable trajectories may contain one or multiple sub-loops for steep waves and large surface tension. Overall, an increase in surface tension tends to increase the motions of surface particles including the relative horizontal distance travelled by a particle as well as the time-averaged drift velocity  相似文献   

15.
The leading tail for slowly varying solitary waves for the perturbed Korteweg-de Vries (KdV) equation is analyzed. The path of the core of the solitary wave is obtained and shown to provide a moving boundary for the leading tail. The leading tail is predicted to be triple valued within a penumbral caustic (envelope of characteristics) caused by the initial acceleration of the core. A rescaling in the neighborhood of the singularity shows that the solution there satisfies the diffusion equation. The solution involves an incomplete Airy-type exponential integral, where critical points (significant for Laplace's asymptotic method) satisfy the structure of the penumbral caustic. A wave number shock develops, which separates two different solitary wave tails, one due to the moving core and the other due to the initial condition. The shock velocity is that predicted from conservation of waves.  相似文献   

16.
The aim of this article is to study the linear growth of the density wave in galaxies by means of numerically resolving unsteady, two-dimensional hydrodynamic equations coupled with Poisson equation under the condition that the local asymptotic solution of linear density wave is given.as an initial value. The results show that the perturbed peak density of linear density wave grows to the same order as the basic state density during merely tens of million years,the spiral pattern emerging which has barred structure in its inner region. The angular velocity of the spiral pattern and the growth rate of perturbed density vary gradually with changes in spatial place and time. The approximate property of quasistationary spiral structure hypothesis is discussed in this paper.  相似文献   

17.
This paper considers the problem of constructing far-field asymptotics of internal gravity waves generated by an oscillating local source of perturbations moving in a stratified flow of finite depth. The velocity of the perturbation source does not exceed the maximum group velocity of an individual wave mode. The wave pattern consists of waves of two types: annular and wedge-shaped. Solutions expressed in terms of the Hankel function are obtained for the asymptotics of annular waves. The asymptotics of wedge-shaped waves are expressed in terms of the Airy function and its derivative.  相似文献   

18.
The dynamic interaction (contact) between an elastic half-space and several smooth punches is studied. It is assumed that the dimensions of the contact regions Ωi are much smaller than the distances between them and the scale of time of the process considered is comparable with the time required for an elastic wave to travel from one region to another. An asymptotic approach to the solution of the problem is proposed and the first two terms of the asymptotic representation of the displacement in the contact region and its neighborhood are constructed. Institute of Problems of Machine Science, Russian Academy of Sciences, St. Petersburg 199178. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 204–210, November–December, 1999.  相似文献   

19.
The linear surface gravity wavefield around a breakwater and on water of varying depth is described by a uniform asymptotic representation. The scattering of not necessarily irrotational wave packets generated by sources at arbitrary distance from the breakwater can be treated with the technique here expounded.  相似文献   

20.
In this paper we study the antiplane problem of concentrated point force moving with constant velocity and oscillating with constant frequency in unbounded homogeneous anisotropic elastic medium.The explicit representation of the elastodynamic Green's function is obtained by using Fourier integral transform techniques for all rates of source motion as a sum of the integrals over the finite interval. The dynamic and quasistatic components of the Green's function are extracted. The stationary phase method is applied to derive an asymptotic approximation at the far wave field. The simple formulae for Poynting energy flux vectors for moving and fixed observers are presented too.It is shown that the motion brings some differences in the far field properties, such as, for example, fast and slow waves appearance under superseismic motion and modification of the wave propagation zones and their numbers.The case of isotropic medium is considered separately. For isotropic material all main formulae are obtained in explicit forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号