首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 1‐methyl‐3‐trimethylsilylimidazoline‐2‐thione with hexachlorodisilane proceeds toward substitution of four of the disilane Cl atoms during the formation of disilicon complexes with two neighboring hexacoordinate Si atoms. The N,S‐bidentate methimazolide moieties adopt a buttressing role, thus forming paddlewheel‐shaped complexes of the type ClSi(μ‐mt)4SiCl (mt=methimazolyl). Most interestingly, three isomers (i.e., with (ClN4)Si? Si(S4Cl), (ClN3S)Si? Si(S3NCl), and (ClN2S2)Si? Si(S2N2Cl) skeletons as so‐called (4,0), (3,1), and cis‐(2,2) paddlewheels) were detected in solution by using 29Si NMR spectroscopic analysis. Two of these isomers could be isolated as crystalline solids, thus allowing their molecular structures to be analyzed by using X‐ray diffraction studies. In accord with time‐dependent NMR spectroscopy, computational analyses proved the cis‐(2,2) isomer with a (ClN2S2)Si? Si(S2N2Cl) skeleton to be the most stable. The compounds presented herein are the first examples of crystallographically evidenced disilicon complexes with two Si? Si‐bonded octahedrally coordinated Si atoms and representatives of the still scarcely explored class of Si coordination compounds with sulfur donor atoms.  相似文献   

2.
Reactions of Thiazyl Halides XSN (X = F, Cl) with Perfluorinated Imines Rf2 NH (Rf = F, CF3, CF3S, (CF3)2C?, (CF3)2S?): Attempted Preparations of Aminothiazyls (?N? S?N) Thiazyl halides or their precursors Cl3S3N3 and FC(O)N?SF2 react with perfluoro imines to provide the corresponding aminothiazyls as unstable and reactive intermediates. While with HNF2 or KF · HNF2 the final products N2F4 and S4N4 are formed, [(CF3)2N]2Hg reacts with Cl3S3N3 to give CF3N?CF2, FSN, and HgCl2. The expected product CF3SN?S?NSCF3 ( 4 ) is obtained from (CF3S)2NH or Hg[N(SCF3)2]2 and FSN probably via (CF3S)2 NSN. Surprisingly, (CF3)2C?NLi forms with ClSN, Cl3S3N3 or [S3N2Cl]Cl in the presence of NH4Cl 4,5-Dihydro-3,3,5,5-tetrakistrifluoromethyl-3H-1λ4,2,4,6-thiatriazine ( 6 ) and (CF3)2C?NSxN?C(CF3)2 (X = 1, 2) ( 7a, b ) as byproducts. A CsF catalyzed reaction at 70 to 80°C between (CF3)2C?NLi and FSN provides low yields of (CF3)2C?N? S? N?S?NCF(CF3)2 ( 8 ) together with 7a, b. The latter are the only products without CsF. When (CF3)2S?NH is treated with FSN, the compounds CF3SCF3, S4N4, and N2 are identified. It is shown by 19F and 14N-n.m.r. spectroscopy that (CF3)S?NSN is an unstable intermediate.  相似文献   

3.
The reaction of S4N4Cl2 with CH3OH gives S4N4(OCH3)2, a simple dimethoxoderivative of S4N4. Its overall geometry is analogous to other compounds of the S4N4X2 type. The chlorination of S4N4(OCH3)2 leads to the oxidation of one sulfur atom to SVI and CH3OS4N4(O)Cl is formed. The compounds were characterized by ir spectroscopy and their crystal structures were determined from single crystal diffraction data collected at ?153°C. The presence of SVI in the molecule of CH3OS4N4(O)Cl is manifested by a marked shortening of the bonds formed by this atom as compared with S4N4Cl2 and S4N4(OCH3)2.  相似文献   

4.
Reactions of S4N4 with diphosphines, Ph2P(X)PPh2 (X = NC4H8N, CH2CH2) have resulted in the isolation of N3S3? NPPh2(X)Ph2PN? S3N3 (X = NC4H8N, CH2CH2), (S)PPh2(CH2CH2)Ph2PN? S3N3, and (S)PPh2NC4H8NPh2P(S) as new compounds. These heterocycles have been characterized by analytical and spectroscopic (IR, UV-VIS, 1H and 31P-NMR, and MS) techniques.  相似文献   

5.
Reaction of Thiazylfluoride with Multifunctional Nitrogen Derivatives From the reaction of NSF 1 with LiN(SiMe3)R′ (R′ = CMe3, SiMe3), linear [e. g. (Me3C? N?S?N? )2S ( 11 ), Me3C? N?S?N? CMe3 ( 14 ), Me3Si? N?S?N? SiMe3 ( 17 ), (Me3Si)2N? S? N?S?N? SiMe3 ( 19 )] and cyclic thiazenes (S4N5F ( 22 )) are isolated, (S3N4)n ( 23 ) is obtained in high yield from 1 and 17 (in the ratio 2:1). Possible structures for 23 are discussed; the reaction of 23 with AsF5 gives S4N4 · AsF5 ( 24 ) in a hitherto unknown modification. Possible reactions of the terminal SN groups are discussed and the structures of 11 and 24 are reported.  相似文献   

6.
The following p-substituted N,N-bis-trimethlsilyl anilines p-X? C6H4? N[Si(CH3)3]2 are prepared by silylation of free amines: X = H, CH3, C2H5, CH3O, CH3CO, F, Cl, Br, J, CN, C6HS, (CH3)3SiO, and [(CH3)3Si]2N, and the isotopic derivatives C6H5? 15N[Si(CH3)3]2 and C6D5N[Si(CH3)3]2. The vibrational spectra are reported and assigned. The molecular symmetry of p-[(CH3)3Si]2N? C6H4? N[Si(CH3)3]2 is determined. The influence of the mass of the substituents X on the positions of the νsSiNSi vibrational frequencies is discussed.  相似文献   

7.
CF3SO2N?SCl2 reagiert mit (CH3)2S[NSi(CH3)3]2, (C4H8)S[NSi(CH3)3]2 oder (C5H10)S[NSi(CH3)3]2 unter Trimethylchlorsilanabspaltung zu den achtgliedrigen S4N4-Derivaten S4N4(NSO2CF3)2(CH3)4 3 , S4N4(NSO2CF3)2(C4H8)2 4a und S4N4(NSO2CF3)2(C5H1 0)2 4b . In den achtgliedrigen SN-Ringen haben die Schwefelatome die Koordinationszahl 3 und 4. Die Röntgenstrukturanalyse von 4a ergab eine Sessel-Konformation. 4a kristallisiert orthorhombisch in der Raumgruppe Pna21 mit a = 17,641(4), b = 6,406(2), c = 19,130(4) Å, dx = 1,815 g cm?3 und Z = 4. Die mittleren S? N-Abstände betragen an den vierfach koordinierten Schwefelatomen 1,597 Å und an den Schwefelatomen mit der Koordinationszahl 3 1,650 Å. CF3SO2N? SCl2 reagiert mit trimethylzinnhaltigen S? N-Verbindungen zum bekannten CF3SO2N[Sn(CH3)3]S(CH3)NSO2CF3 und Dimethylzinndichlorid. Synthesis and X-Ray Structure Analysis of S4N4-Derivatives with Threefold and Fourfold Coordinated Sulfur Atoms CF3SO2N?SCl2 reacts with (CH3)2S[NSi(CH3)3]2, (C4H8)S[NSi(CH3)3]2 or (C5H10S[NSi(CH3)2]2 under elimination of (CH3)3SiCl to yield the eight-membered S4N4 derivatives S4N4?NSO2CF3)2(CH3)4, 3 , S4N4(NSO2CF3)2(C4H8)2 4a und S4N4(NSO2CF3)2(C5H1 0)2 4b . In the eight-membered SN-rings the sulfur atoms have the coordination number 3 and 4. The X-ray structure analysis of 4a revealed a chair conformation. 4a crystallizes in the orthorhombic space group Pna21 with a = 17.641(4), b = 6.406(2), c = 19.130(4) Å, dx = 1.815 g cm?3, and Z = 4. The average S? N distance was found to be 1.597 Å at fourfold coordinated sulfur atoms and 1.650 Å at sulfur with coordination number 3. CF3SO2N=SCl2 reacts with trimethyl tin-containing S? N compounds to the known CF3SO2N[Sn(CH3)3]S(CH3)NSO2CF3 and dimethyl tin dichloride.  相似文献   

8.
Reactions of P4S10 with Organosilicon Compounds P4S10 ( 1 ) can be degraded with silicon-nitrogen compounds. 1 reacts with (CH3)3Si? N(CH3)2 ( 2 a ) and (CH3)3Si? N(C2H5)2 ( 2 b ) to yield S?P[N(CH3)2]2SSi(CH3)3 ( 3 a ) and ( 3 b ). By the reaction of 1 with [(CH3)3Si]2S ( 4 ) S?P[S? Si(CH3)3]3 ( 6 ) is formed in high yield. (C6H5PS2)2 ( 7 ) was used as a model to investigate the course of the reaction. This leads to C6H5P(S)? [N(CH3)2]SSi(CH3)3 ( 9 ) and C6H5P(S)[SSi(CH3)3]2 ( 10 ). The reaction mechanism will be discussed. The n.m.r. data and mass spectra are reported.  相似文献   

9.
Electrochemical Syntheses. XXIII. Electrochemical and EPR-Spectroscopic Investigation of the Redox Behaviour of (SN)+ and [S3N3]? The eventual syntheses of SN. and (S3N3). by electrochemical reduction or oxidation, respectively, starting from (SN)+[SbF6]? and (PPN)+[S3N3]? were checked by e.p.r. spectroscopy. Only the reduction of (SN)[SbF6] yielded detectable paramagnetic species: the long-known (S3N2)+. and a radical, the e.p.r. signal of which is a quintet of triplets. This signal is not obtained by electro-chemical oxidation of CF3CO? N?(S3N2) or FSO2? N?(S3N2).  相似文献   

10.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

11.
The title compound, (S)‐(+)‐4‐[5‐(2‐oxo‐4,5‐di­hydro­imidazol‐1‐yl­sulfonyl)­indolin‐1‐yl­carbonyl]­anilinium chloride (S)‐(+)‐1‐[1‐(4‐amino­benzoyl)­indoline‐5‐sulfonyl]‐4‐phenyl‐4,5‐di­hydro­imidazol‐2‐one, C24H23N4O4S+·Cl?·C24H22N4O4S, crystallizes in space group C2 from a CH3OH/CH2Cl2 solution. In the crystal structure, there are two different conformers with their terminal C6 aromatic rings mutually oriented at angles of 67.69 (14) and 61.16 (15)°. The distances of the terminal N atoms (of the two conformers) from the chloride ion are 3.110 (4) and 3.502 (4) Å. There are eight distinct hydrogen bonds, i.e. four N—H?Cl, three N—H?O and one N—H?N, with one N—H group involved in a bifurcated hydrogen bond with two acceptors sharing the H atom. C—H?O contacts assist in the overall hydrogen‐bonding process.  相似文献   

12.
Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

13.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. IV. Preparation and Properties of New N-silylated Diphosphazenes Phosphazeno-phosphanes, R3P = N? P(OR′) 2 (R = CH3, N(CH3)2; R′ = CH2? CF3) react with trimethylazido silane to give N-silylated diphosphazenes, R3P = N? P(OR′)2 = N? Si(CH3)3 compounds decompose by atmospherical air to phosphazeno-phosphonamidic acid esters, R3 P?N? P(O)(O? CH2? CF3)(NH2). Thermolysis of diphosphazene R3P = N? P(OR′) 2 = N? Si(CH3)3 (R = CH3, R′ = CH2? CF3) produces phosphazenyl-phosphazenes [N?P(N?P(CH3)3)OR′] n. The compounds are characterized by elementary analysis, IR-, 1H-, 29Si-, 31P-n.m.r., and mass spectroscopy.  相似文献   

14.
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones).  相似文献   

15.
Syntheses of the title compounds, viz. N(CH2CH2O)3GeY ( 2 Y?Fluorenyl; 4 Y?PhC?C) by the reaction of X3GeY ( 1 Y?Fluorenyl, X?Br; 5 Y?PhC?C, X?Cl) with N(CH2CH2OSnR3)3 ( 3 R?Et; 6 R?Bu) are reported including the preparation of the new compound 1 . Identity and structures were established by elemental analyses, 1H and 13C NMR spectroscopy. 2 and 4 were characterized by mass spectrometry. Single crystal structures of 1 , 2 and 4 were determined by X-ray diffraction methods.  相似文献   

16.
Concerning the Cleavage of Si? C Bonds in Si-methylated Carbosilanes The chances for the cleavage of Si? Me bonds (Me ? CH3) and Si? C? Si bonds in their molecular skeletons using ICl or ICl/AlBr3 are examined in 13 carbosilanes; i. e. (Me2Si? CH2)3 1 , 1,3,5,7-tetramethyl-1,3,5,7-tetrasilaadamantane 2 , (Me3Si? CH2)2SiMe2 3 , HC(SiMe3)3 4 , the 1,3,5,7-tetrasilaadamantane. carrying bhe ? CH2? SiMe, group at one Si atom 5 , the 1,3,5-trisilacyclohexane, carrying the ? CH2? SiNe3 group 6 , three derivatives of the 1,3,5-trisilacyclohexane, carrying SiMe3 groups at skeletal C atoms 7 , 8 , 9 , three derivatives of the 1,3,5-trisilacyclohexane, carrying CH3, groups at skeletal C atoms 10 10, 11 , 12 and 13 , derived from (Me2Si? CH2)3 having one ?CBr2 group. Using ICl one Me group at each Si atom in 1 can be split off successively, finally yielding (ClMeSi? CH2)3. 2 is transformed to the Si-chlorinated 1,3,5,7-tetrasilaadamantane. 3 , treated with ICl yields (ClMeSi? CH2)2SiMeCl, as 4 forms HC(SiMe2Cl)3. Higher chlorinated compounds can be obtained by using ICl and AlBr3 in catalytic amounts. Thus 1 leads to (Cl2Si? CH2)3, no ring-opening is observed. However, in the reaction of 1 with HBr/AlBr3 bromination at the Si atoms and ring-opening (ratio 1:1) proceed coincidently. The reaction of either 3 or (ClMe2Si? CH2)2SiMeCl with ICl/AlBr3 leads to (Cl2MeSi? CH2)2SiCl2, and (Me3Si)2CH3 forms (Cl2MeSi? )2CH2 similarly. The ? CH2? SiMe3 group in 5 and 6 is not cleaved off by ICl; the introduction of a Cl group at each Si atom is observed instead. Furthermore, 6 undergoes cleavage (≈8%) of the Si? C ring adjacent to the chain-substituted Si atom [formation of ClMe2Si? (CH2? SiMeCl)2CH2? SiMe2? CH2Cl]. 7 , 8 , 9 (having the ? SiMe3 group at the C atoms) react with ICl by splitting off one Si? Me group from each Si atom. In 7 we also observe the ring-opening to an amount of ≈25% [formation of (ClMe2Si)CH2? SiMeCl? CH2? SiMe2? CH2Cl]. In 8 (having two CH(SiMe3) groups the ring-opening reaction is reduced to about 5% [formation of ClMe2? CH(SiMe2Cl)? SiMeCl? CH(SiMe2Cl)? SiMe2? CH2Cl], while in 9 (having three CH(SiMe3) groups) it is not found at all. In 10 , 11 , 12 (having the CH3 group at the C atoms) ICl substitutes one Me group (formation of SiCl) at each Si atom (no ring-opening). The CBr2 group reduces the reactivity of 13 towards ICl. Only the split-off of one Me group at the Si atom in para-position to the CBr2 group is observed. Using ICl/AlBr3 higher chlorinated derivatives are obtained (no ring-opening). Most of the mentioned compounds were identified via their Si? H-containing derivatives, thus facilitating the chromatographic separation as well as the 1H-NMR-spectroscopic investigations.  相似文献   

17.
6,2,4-Thiadiazetidines and 1,2λ6,3-Oxathiazetidines From the reaction of the sulfur triimides (RN?)3S ( 2a R?(CH3)3C, 2b R?(CH3)3Si) with pentafluoroazapropene ( 11 ) the appropriate 1λ6,2,4 thiadiazetidines ( 13a, 13b ) are formed, while from ClSO2N?CCl2 ( 14 ) and 2a (CH3)3C? N?C?N? SO2Cl ( 17 ) is isolated. 2b and hexafluoroacetone ( 18 ) give the rather unstable 1,2λ6,3-oxathiazetidine ( 20 ).  相似文献   

18.
Photodecomposition of dimethylnitrosamine in the gas phase ( ~ 1 Torr) has been investigated following irradiation into the S1 (nπ*) ← S0 (363.5 nm) and S2 (ππ*) ← S0 (248.1 nm) transitions at room temperature. With a quantum yield of unity, excitation into the S1 state yields the fragments (CH3)2N? and NO which then recombine leaving no photoproducts. The addition of O2 results in only one photoproduct, (CH3)2NNO2. Irradiating into the S2 state, the products CH2?N? CH3, (CH2?N? CH3)3, CH2?NOH, N2O, NO, H2, and N2 were identified by capillary gas chromatography mass spectrometry. In the presence of N2 as a buffer gas the photoproducts are only CH2?N? CH3, (CH2?N? CH3)3, N2O, and H2. For both excitation conditions a mechanism is proposed involving cleavage of the N, N-bond as the main primary photolytic process.  相似文献   

19.
Thionitrosyl Complexes of Ruthenium. Crystal Structure of (PPh4)2[{RuBr4(NS)}2 (μ-N2S2)] Ruthenium trichloride reacts with trithiazyl chloride, yielding cis-RuCl4 (NS)2. With triphenylmethylphosphonium chloride this forms the complex [RuCl4(NS)2Cl]? in which a chloride ion is bonded between the sulfur atoms in a chelate manner. With tetraphenylphosphonium bromide, RuCl4(NS)2 undergoes a redox reaction that affords (PPh4)2[{RuCl4(NS)}2(μ-N2S2)] which can be transformed to the title compound by the action of trimethylsilyl bromide. The i.r. spectra are reported. The crystal structure of (PPh4)2[{RuBr4(NS)}2(μ-N2S2)] · 4 CH2X2 (X ? Cl, Br) was determined with X-ray diffraction data (1534 observed reflexions, R = 0.085). Crystal data: monoclinic, space group P21/n, Z = 2, a = 1680.7, b = 1287.0, c = 1706.1 pm and β = 99.97°. The compound consists of tetraphenylphosphonium cations, CH2Br2 and CH2Cl2 molecules (statistically) and centrosymmetric anions [{RuBr4(NS)}2(μ-N2S2)]2? in which the ruthenium atoms are linked via the nitrogen atoms of a planar N2S2 ring. In the corresponding trans-positions every Ru atom has a thionitrosyl ligand with a nearly arrangement Ru?N?S with RuN and NS bond lengths of 169 und 151 pm, respectively. Four bromine atoms complete the distorted octahedral coordination of each ruthenium atom. The bromine atoms that are coplanar with the N2S2 ring form rather short Br…?S contacts with a mean distance of 317 pm.  相似文献   

20.
The kinetics of the base catalysed racemization of [Co(EN3A)H2O]
  • 1 Abbreviations: EN3A3?=(?OOCCH2)2N(CH2)2NHCH2COO?; ME3A3?=(?OOCCH2)2N(CH2)2 N(CH3)CH2COO?; EDDA2?=?OOCCH2NH(CH2)2NHCH2COO?; EDTA4?=(?OOCCH2)2N(CH2)2N(CH2COO?)2;TNTA4?=(?OOCCH2)2N(CH2)3N(CH3COO?)2; HETA3?=(?OOCCH2)2N(CH2)2N(CH2COO?)CH2CH2OH; en=H2N(CH2)2NH2; Meen=H2N(CH2)2NHCH3; sar?=?OOCCH2NHCH3.
  • were studied polarimetrically in aqueous buffer solution. The reaction rate is first order in OH? and in complex, in weakly acidic medium. Activation parameters are ΔH≠=22 kcal · mol?1, ΔS≠=26 cal · K?1. The results are discussed in terms of an SN1CB mechanism involving exchange of the ligand water molecule. The N-methylated analogue [Co(ME3A)H2O] does not racemize in the pH-range investigated. Loss of optical activity occurs at a rate which is about 1,000 times slower than the racemization of [Co(EN3A)H2O](60°) and coincides with the decomposition of the complex.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号