首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the generator A of a C 0-semigroup on a Banach space (X, ∥·∥), we apply the perturbation of Desch-Schappacher type to solve the Volterra integordifferential equation VE $$\left\{ \begin{gathered} \frac{{du\left( t \right)}}{{dt}} = A\left( {u\left( t \right) + \int_0^t {a\left( {t - s} \right)B_1 u\left( s \right)ds + B_2 u\left( t \right) + B_3 f\left( t \right)} } \right) \hfill \\ + \int_0^t {b\left( {t - s} \right)B_4 u\left( s \right)ds + B_5 u\left( t \right) + g\left( t \right),t \geqslant 0,} \hfill \\ u\left( 0 \right) = u_0 , \hfill \\ \end{gathered} \right.$$ > which can be applied to treat boundary value problems and inhomogeneous retarded differential equations.  相似文献   

2.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

3.
4.
Continuous dependence for integrodifferential equation with infinite delay $$\begin{gathered} \dot x = h(t,x) + \int_{ \sim \infty }^t {q(t,s,x(s))ds} + F(t,x(t),Sx(t))t \geqslant 0 \hfill \\ x(t) = \Phi (t) \hfill \\ \end{gathered} $$ where \(Sx(t) = \int_{ \sim \infty }^t {k(t,s,x(s))} ds\) is studied under the assumption of existence of unique solution.  相似文献   

5.
LetW be the Wiener process onT=[0, 1]2. Consider the stochastic integral equation $$\begin{gathered} X_\zeta = x_0 + \int_{R_\zeta } {a_1 (\zeta \prime )X(s\prime ,dt\prime )ds\prime + } \int_{R_\zeta } {a_2 (\zeta \prime )X(ds\prime ,t\prime )dt\prime } \hfill \\ + \int_{R_\zeta } {a_3 (X_{\zeta \prime , } \zeta \prime )W(ds\prime ,dt\prime ) + } \int_{R_\zeta } {a_4 (X_{\zeta \prime , } \zeta \prime )ds\prime ,dt\prime ,} \hfill \\ \end{gathered} $$ whereR ζ =(s, t) ∈ T, andx 0 ∈ ?. Under some assumptions on the coefficients ai, the existence and uniqueness of a solution for this stochastic integral equation is already known (see [6]). In this paper we present some sufficient conditions for the law ofX ζ to have a density.  相似文献   

6.
LetY be a fence of sizem andr=?m?1/2?. The numberb(m) of order-preserving selfmappings ofY is equal toA r-Br-Cr-Dr, where, ifm is odd, $$\begin{gathered} A_r = 2(r + 1)\sum\limits_{s = 0}^r {\left( {\begin{array}{*{20}c} {r + s} \\ {2s} \\ \end{array} } \right)} 4^s , B_r = 2r\sum\limits_{s = 1}^r {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ {s - 1} \\ \end{array} } \right),} \hfill \\ C_r = 4r\sum\limits_{s = 0}^{r - 1} {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right), D_r = \sum\limits_{s = 0}^{r - 1} {(2s + 1)} \left( {\begin{array}{*{20}c} {r + s - 1} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right)} \hfill \\ \end{gathered} $$ . Ifm is even, a similar formula forb(m) is true. The key trick in the proof is a one-to-one correspondence between order-preserving selfmappings ofY and pairs consisted of a partition ofY and a strictly increasing mapping of a subfence ofY toY.  相似文献   

7.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

8.
Given a stochastic differential equation based on semimartingale with spatial parameter (1) $$\varphi _t = x_0 + \int_{t_0 }^t {F(\varphi _s ,ds) } on t \geqslant t_0 $$ and it perturbed system (2) $$\psi _t = x_0 + \int_{t_0 }^t {F\left( {\psi \alpha _s , ds} \right)} + \int_{t_0 }^t {G\left( {\psi _s , ds} \right)} on t \geqslant t_0 $$ In this paper we give some sufficient conditions under which the eventual uniform asymptotic stability of Eq. (1) is shared by Eq. (2).  相似文献   

9.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

10.
§1 IntroductionAnvarovandLarinov[1]introducedthefollowingprey-predatorsystem:x(t)=x(t)[α-γy(t)-γ∫∞0K1(s)y(t-s)ds-∫∞0∫∞0R1(s,θ)y(t-s)y(t-θ)dθds],y(t)=y(t)[-β μx(t) μ∫∞0K2(s)x(t-s)ds ∫∞0∫∞0R2(s,θ)x(t-θ)x(t-s)dθds],(1)whereα,γ,βandμarepositiveconstants,Ki∈C([0,∞),(0,∞))andRi∈C([0,∞)×[0,∞),(0,∞)),i=1,2.Fortheecologicalsenseofsystem(1),wereferto[1,2]andrefer-encescitedtherein.Sincerealisticmodelsrequiretheinclusionoftheeffectofchangingen-vironment,itmot…  相似文献   

11.
LetP(z) be a polynomial of degreen which does not vanish in the disk |z|<k. It has been proved that for eachp>0 andk≥1, $$\begin{gathered} \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P^{(s)} (e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} \leqslant n(n - 1) \cdots (n - s + 1) B_p \hfill \\ \times \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P(e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} , \hfill \\ \end{gathered} $$ where $B_p = \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {k^s + e^{i\alpha } } \right|^p d\alpha } } \right\}^{ - 1/p} $ andP (s)(z) is thesth derivative ofP(z). This result generalizes well-known inequality due to De Bruijn. Asp→∞, it gives an inequality due to Govil and Rahman which as a special case gives a result conjectured by Erdös and first proved by Lax.  相似文献   

12.
This article provides an asymptotic formula for the number of integer points in the three-dimensional body $$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$ for fixed a > b > 0 and large t.  相似文献   

13.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

14.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

15.
For a homogeneous diffusion process (X t ) t?0, we consider problems related to the distribution of the stopping times $\begin{gathered} \gamma _{\max } = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - X_t \geqslant H\} ,\gamma _{\min } = \inf \{ t \geqslant 0:X_t - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} , \hfill \\ \kappa _0 = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} . \hfill \\ \end{gathered} $ . The results obtained are used to construct an inductive procedure allowing us to find the distribution of the increments of the process X between two adjacent kagi and renko instants of time.  相似文献   

16.
In this paper, I propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem $$\left\{ \begin{gathered} - \Delta {\kern 1pt} {\kern 1pt} u = f\left( {x,u} \right){\text{in}}\Omega \hfill \\ u_{\left| {\wp \Omega } \right.} = 0 \hfill \\ \end{gathered} \right.$$ Positive answers to these problems would produce innovative multiplicity results on problem (Pf).  相似文献   

17.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

18.
A class of partial integrodifferential equation from viscoelasticity is formulated as the abstract integrodifferental equations in Banach space :
  相似文献   

19.
In the present paper, we consider the following stochastic control problem: to minimize the average expected total cost $$J(x,u) = \mathop {\lim \inf }\limits_{T \to \infty } (1/T)E_x^u \int_0^T {\left[ {\phi (\xi _t ) + |u_t (\xi )|} \right]} dt,$$ 〈subject to $$d\xi _t = u_1 (\xi )dt + dw_t , \xi _0 = x, |u| \leqslant 1,$$ (w t) a Wiener process, with all measurable functions on the past of the state process {ξ s ;st} and bounded by unity, admissible as controls. It is proved that, under very mild conditions on the running cost function φ(·), the optimal law is of the form $$\begin{gathered} u_t^* (\xi ) = - sign\xi _t , |\xi _t | > b, \hfill \\ u_t^* (\xi ) = 0, |\xi _t | > b. \hfill \\ \end{gathered} $$ The cutoff pointb and the performance rate of the optimal lawu* are simultaneously determined in terms of the function φ(·) through a simple system of integrotranscendental equations.  相似文献   

20.
In this paper we study mild and classical solutions of the second order linear Volterra integrodifferential equation $$(VE^f )\left\{ {\begin{array}{*{20}c} {u''(t) = Au(t) + {\text{ }}\int_0^t {B(t - s)u(s)ds + f(t){\text{ }}for{\text{ }}t \in [0,T]} } \\ {u(0) = x{\text{ }}and{\text{ }}u'(0) = y,} \\ \end{array} } \right.$$ whereA is a closed linear operator whose domainD(A) is not necessarily dense in a Banach spaceX, and {B(t)|t≥0} is a family of bounded linear operators from the Banach space,D(A) endowed with the graph norm intoX. We also give two examples to illustrate the abstract results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号