首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Ionic liquids with tetracyanoborate ([TCB]?) and bis(trifluoromethanesulfonyl)amide ([Tf2N]?) anions generally have low viscosities and high CO2 capacities, and thus they are attractive solvents for CO2-related applications. Herein, we have investigated physical and CO2-absorption properties of 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid ([emim][TCB]) to discuss the anion effects of [TCB]? in comparison with the previous results of [emim][Tf2N]. The density, viscosity, electrical conductivity, and isobaric molar heat capacity were measured as a function of temperature at atmospheric pressure. [emim][TCB] has both lower density and isobaric molar heat capacity than [emim][Tf2N]. [emim][TCB] shows superior transport properties (lower viscosity and higher electrical conductivity) compared to [emim][Tf2N], whereas the Walden plots of molar conductivity against fluidity (reciprocal of viscosity) have smaller values in [emim][TCB] than in [emim][Tf2N] at certain fluidities. The high-pressure CO2 solubilities were also determined in [emim][TCB]. The mole fraction scaled solubility of CO2 in [emim][TCB] is slightly larger than that in [emim][Tf2N] at certain pressures and temperatures. The former ionic liquid shows much higher molarity scaled solubility of CO2 than the latter because of the smaller molar volume. It is suggested that both anions have similar strength of intermolecular interaction with CO2 and comparable changes in the solvent structure between neat and CO2 solution, in view of the thermodynamic parameters of dissolution.  相似文献   

2.
Viscosities of microcrystalline cellulose + 1-butyl-3-methylimidazolium acetate ([bmIm][Ac]) solutions (0.6–1.2 wt%) in contact with CO2 were measured at 312 K with a resonant vibrational viscometer. At 4 MPa and 312 K, the CO2 could reduce the viscosity of 1.2 wt% cellulose + [bmIm][Ac] solution by about 80 %, whereas N2 at the same conditions gave less than a 10 % reduction in viscosity. The viscosity-averaged degree of polymerization and IR spectrum showed that cellulose did not decompose during experiments and that [bmIm][Ac] acted as a non-derivatizing solvent during the dissolution and viscosity reduction process. Further, although CO2 does react with [bmIm][Ac] to form 1-butyl-3-methylimidazolium-2-carboxylate, the reaction seems to be reversible and it does not affect the cellulose. Thus, [bmIm][Ac] with CO2 provides an effective solvent for cellulose and the solvent system can probably be recycled or reused.  相似文献   

3.
The permeability of carbon dioxide (CO2) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF4], [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf2N] membrane. The membrane of [bmim][PF6] presents the lowest permeability.The separation coefficient between CO2 and N2 through the ionic liquid membranes was also investigated at the volume fraction of CO2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF4] and [bmim][BF4] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf2N] membrane which presents the highest permeability of CO2.  相似文献   

4.
Mixing ionic liquids (ILs) has been revealed as a useful way to finely tune the properties of IL-based solvents. The scarce available studies on IL mixtures have shown a quasi-ideal behavior of their physical properties. In this work, we have performed a thermophysical characterization of two binary IL mixtures, namely {4-methyl-N-butylpyridinium bis(trifluoromethylsulfonyl)imide ([4bmpy][Tf2N]) + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4])} and {[4bmpy][Tf2N] + 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate [emim][TFES]}. Both binary IL mixtures have been recently proposed as promising solvents in the (liquid + liquid) extraction of aromatic hydrocarbons from mixtures with alkanes. Densities, viscosities, refractive indices, thermal stability, and specific heats of the {[4bmpy][Tf2N] + [emim][EtSO4]} and {[4bmpy][Tf2N] + [emim][TFES]} IL mixtures have been measured as a function of both temperature and composition. Dynamic viscosities, refractive indices, and thermal stability of the {[4bmpy][Tf2N] + [emim][EtSO4]} mixture have exhibited strong deviations from the ideality, in contrast with the quasi-ideal properties of the {[4bmpy][Tf2N] + [emim][TFES]} mixture and the behavior of the imidazolium and pyridinium-based IL mixtures studied hitherto. The reliability of predictive methods of the thermophysical properties of the mixtures has also been evaluated.  相似文献   

5.
In this work, the phase behaviour of the binary system of carbon dioxide and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been studied experimentally. The equipment used for the experiments is the Cailletet set-up, based on visual observations of phase transitions of systems with constant overall composition. Results are reported for carbon dioxide concentrations ranging from 12.3 to 59.3 mol%, and within temperature and pressure ranges of 310–450 K and 0–15 MPa, respectively. The data reveal an extremely high capacity of the selected ionic liquid for dissolving CO2 gas, for example, reaching up to about 60 mol% within the above-mentioned pressure and temperature range. Also, the solubility of CO2 in the ionic liquid [emim][Tf2N] is compared to the solubility of CO2 in the ionic liquid [emim][PF6], an ionic liquid that shares the same cation.  相似文献   

6.
Isobaric T, x, y data were reported for ternary systems of {water + 2-methyl-2-propanol (tert-butyl alcohol, TBA) + ionic liquid (IL)} at p = 100 kPa. When the mole fraction of TBA on IL-free basis was fixed at 0.95, measurements were performed at IL mass fractions from 0.6 down to 0.05, in a way of repeated synthesis. The vapor-phase compositions were obtained by analytical methods and the liquid-phase compositions were calculated with the aid of mass balances. Activity coefficients of water and TBA were obtained without the need of a thermodynamic model of the liquid-phase. Six ILs, composed of an anion chosen from [OAc]? or [Cl]?, and a cation from [emim]+, or [bmim]+, or [hmim]+, were studied. Relative volatility and activity coefficients were presented in relation with the IL mole fraction, showing the effect of the ILs on a molar basis. The effect of the ILs on relative volatility of TBA to water was depicted by the effect of anions and cations on, respectively, the activity coefficients of water and TBA. The results indicated that, among the six ILs studied, [emim][Cl] has the most significant effect on enhancement of the relative volatility, which reaches a value of 7.2 at an IL mass fraction of 0.58. Another IL, [emim][OAc], has also significant effect, with an appreciable value of 5.2 for the relative volatility when the IL mass fraction is 0.6. Considering the relatively low viscosity and melting point of [emim][OAc], it might be a favorable candidate as solvent for the separation of water and TBA by extractive distillation. Simultaneous correlation by the NRTL model was presented for both systems of (water + ethanol + IL) and (water + TBA + IL), using consistent binary parameters for water and IL.  相似文献   

7.
8.

Abstract  

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7% mol, or DS 0.017) of cellulose after dissolution in technical grade [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2mim]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.  相似文献   

9.
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF‐TrFE) has been investigated. 1‐ethyl‐3‐methylimidazolium acetate, [C2mim][OAc], 1‐ethyl‐3‐methylimidazolium triflate, [C2mim][(CF3SO3)], 1‐ethyl‐3‐methylimidazolium lactate, [C2mim][Lactate], 1‐ethyl‐3‐methylimidazolium thiocyanate, [C2mim][SNC] and 1‐ethyl‐3‐methylimidazolium hydrogen sulfate [C2mim][HSO4] have been used in SPE prepared by solvent casting. The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC]>[CF3SO3)]>[HSO4]>[Lactate]>[OAc], which is mainly dependent on the viscosity of the ionic liquid.  相似文献   

10.
In this study high molecular weight pure rye arabinoxylan and spruce arabinoglucuronoxylan were acetylated in ionic liquid (IL) systems. Two different ILs were used in our study. In both IL, using optimized procedures, it was possible to achieve acetylation within 5 min. The first system involved direct dissolution into 1-ethyl-3-methylimidazolium dimethylphosphate ([emim][Me2PO4]), followed by addition of acetyl chloride/pyridine (AcCl/Pyr) and additional chloroform (CHCl3), as co-solvent. The other system involved direct dissolution into the novel protic IL 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]), followed by acetic anhydride/1,5-diazabicyclo[4.3.0]non-5-ene (Ac2O/DBN) and no co-solvent added. The full acetyl substitution of the xylans was confirmed by FT IR and 1H NMR. The acetylated xylans maintained a high molecular weight, which was confirmed by gel permeation chromatography. The products were soluble in CHCl3 and dimethyl carbonate, which is considered as a ‘green’ reagent or solvent. This allowed for the casting of the materials into clear transparent films, opening opportunity for further processing and evaluation of these materials.  相似文献   

11.
Aqueous biphasic systems (ABS) composed of the choline alkanoate ionic liquids (ILs) choline acetate [Cho][OAc], choline propanoate [Cho][Pro], choline butyrate [Cho][But], and choline hexanoate [Cho][Hex], mixed with K3PO4 solutions at pH 7.2 and 14.5, were prepared and their phase diagrams were compared. The ability to form ABS with alkaline K3PO4 solutions decreased in the order [Cho][OAc] ≈ [Cho][Pro] > [Cho][But] > [Cho][Hex], while with neutral K3PO4 solutions, [Cho][OAc] could not form an ABS, and the other three ILs performed similarly. All of the biphasic regions of the ABS decreased with the increase in pH. 1H-NMR data indicated anion exchange between phases in ABS at neutral pH. The ABS at neutral pH were evaluated to extract the triazine herbicides simazine, cyanazine, and atrazine, and the ABS formed by [Cho][Pro] and the pH 7.2 K3PO4 solution has shown extraction recoveries higher than 90%.  相似文献   

12.
Cellulose is one of the most abundant natural polymer sources, but the applications of cellulose are limited due to difficulty in dissolving cellulose in water and common chemical solvents. In the past decades, ionic liquids have been studied to dissolve cellulose efficiently, sustainably, and in an eco‐friendly manner. In this study, a series of imidazolium‐based ionic liquids were synthesized to explore as solvents for cellulose, including 1,3‐dimethylimidazolium dimethylphosphate ([mmim]dmp), 1‐ethyl‐3‐methylimidazolium dimethylphosphate ([emim]dmp), 1‐butyl‐3‐methylimidazolium dimethylphosphate ([bmim]dmp), 1‐hexyl‐3‐methylimidazolium dimethylphosphate ([hmim]dmp), 1‐ethyl‐3‐methylimidazolium diethylphosphate ([emim]dep), 1,3‐diethylimidazolium diethylphosphate ([eeim]dep), and 1‐butyl‐3‐ethylimidazolium diethylphosphate ([beim]dep). Rheology experiments were conducted to study the flow behavior of cellulose in these ionic liquids and cosolvents. We found that the dissolution capacity of cellulose increases with decreasing viscosity of the solvent and that the rheological properties depend most strongly on the concentration of cellulose dissolved. Systems composed of cellulose in [mmim]dmp, [emim]dmp, and [emim]dep behave as viscoelastic gels, while formulations of cellulose in [bmim]dmp, [hmim]dmp, [eeim]dep, and [beim]dep show viscoelastic liquid behavior. These results will impact development of new solvents for processing of cellulose‐based polymeric materials.  相似文献   

13.
Cellulose acetates were synthesized homogeneously in four types of ionic liquids without any catalyst using cotton linter as the raw material and acetic anhydride as the esterification agent. FTIR, XRD and DSC were used to characterize the obtained products. It was shown that the homogeneously prepared cellulose acetates became completely amorphous. Degree of substitution of cellulose acetate synthesized in [C4C1Im][OAc] was found the highest; whereas Tg of this ester was the lowest. It was also found that the film made of cellulose acetate prepared in [C4C1Im][OAc] had lower toughness.  相似文献   

14.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

15.
In this work, hydrogels obtained by mixing gelatin with ionic liquids (ILs) are prepared. Two different ILs, [emim][EtSO4] and [bmim][N(CN)2], are used to prepare hydrogels with different amounts of starting water and phosphate buffer content, which are used after a maturation period. The percentage of swelling in water and phosphate buffer, swelling and diffusion parameters are investigated in thin‐film polymers (1 × 1 cm2; 1‐mm thick) with different maturation times and at temperatures ranging from 4 to 37 °C. [emim][EtSO4] polymers show a moderate (100% weight increase) but quick swelling that reaches 80% of the equilibrium within 30 min. They are liquefied and dissolved at temperatures above 25 °C. [bmim][N(CN)2] polymers with short maturation times exhibit a similar behavior to the former, but more mature hydrogels register a very small swelling, abnormal kinetics and are more resistant to higher temperatures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys., 2013  相似文献   

16.
The oily sludge would cause environment pollution, and would cause the heavy oil waste. Therefore, it was vital for us to find novel methods to obtain heavy oil from the oily sludges. In this study, the [C12mim][PF6] and [C12mim][Br] ionic liquids(ILs) were used to enhance the oil recovery. The toluene could obtain the highest oil recovery, and both the two ILs could increase the oil recovery. Toluene could obtain the highest oil recovery (89.4 wt%), and n-octane could obtain the lowest oil recovery (76.8 wt%). [C12mim] [PF6] could efficiently increase the heavy oil recovery to 91.2 wt%(by toluene). The [C12mim][Br] could increase the heavy oil recovery further. Both the [C12mim] [PF6] and the [C12mim][Br] ionic liquids could increase the heavy ois C/H ratio, decrease heavy oil viscosity and increase the sands hydrophilicity. The [C12mim][Br] ionic liquids showed better effect. In addition, the ionic liquids could increase the solvents recovery, and the ionic liquids recovery were high. Therefore, the ionic liquids enhanced oil recovery could be recycled to ten times. The two ionic liquids could effectively decrease the heavy oil interaction force, and when the ionic liquids increased to 200 ppm, the force remained stable. In the end, the ionic liquids enhancing solvent extraction mechanism was put forward.  相似文献   

17.
Electrophilic nitration of aromatics in ionic liquid solvents.   总被引:10,自引:0,他引:10  
Potential utility of a series of 1-ethyl-3-methylimidazolium salts [emim][X] with X = OTf-, CF3COO-, and NO3- as well as [HNEtPri2][CF3COO] (protonated Hünig's base) ionic liquids were explored as solvent for electrophilic nitration of aromatics using a variety of nitrating systems, namely NH4NO3/TFAA, isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH, Cu(NO3)/TFAA, and AgNO3/Tf2O. Among these, NH4NO3/TFAA (with [emim][CF3COO], [emim][NO3]) and isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH (with [emim][OTf]) provided the best overall systems both in terms of nitration efficiency and recycling/reuse of the ionic liquids. For [NO2][BF4] nitration, the commonly used ionic liquids [emim][AlCl4] and [emim][Al2Cl7] are unsuitable, as counterion exchange and arene nitration compete. [Emim][BF4] is ring nitrated with [NO2][BF4] producing [NO2-emim][BF4] salt, which is of limited utility due to its increased viscosity. Nitration in ionic liquids is surveyed using a host of aromatic substrates with varied reactivities. The preparative scope of the ionic liquids was also extended. Counterion dependency of the NMR spectra of the [emim][X] liquids can be used to gauge counterion exchange (metathesis) during nitration. Ionic liquid nitration is a useful alternative to classical nitration routes due to easier product isolation and recovery of the ionic liquid solvent, and because it avoids problems associated with neutralization of large quantities of strong acid.  相似文献   

18.
A natural abundance of the air CO2 in NaOH(aq) at low temperature was investigated in terms of cellulose-CO2 interactions upon cellulose dissolution in this system. An organic superbase, namely 1,8-diazabicyclo[5.4.0]undec-7-ene, DBU, known for its ability to incorporate CO2 in carbohydrates, was employed in order to shed light on this previously overlooked feature of NaOH(aq) at low temperature. The chemisorption of CO2 onto cellulose was investigated using spectroscopic methods in combination with suitable regeneration procedures. ATR-IR and NMR characterisation of regenerated celluloses showed that chemisorption of CO2 onto cellulose during its dissolution in NaOH(aq) takes place both with and without employment of the CO2-capturing superbase. The chemisorption was also observed to be reversible upon addition of water: CO2 desorbed when water was used as regenerating agent but could be preserved when instead ethanol was used. This finding could be an important parameter to take into consideration when developing processes for dissolution of cellulose based on this system.  相似文献   

19.
The (liquid + liquid) equilibrium (LLE) data for two systems containing heptane, toluene, and 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([mpim][Tf2N]) or 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([amim][Tf2N]) ionic liquids (ILs) were determined at T = 313.2 K and atmospheric pressure. The effect of a double bond in an alkyl side chain in the imidazolium cation was evaluated in terms of selectivity and extractive capacity. The results show a decrease of the amount of toluene and heptane dissolved in the IL with the allyl group. Thus, the distribution ratios of toluene and heptane of [mpim][Tf2N] IL are higher than those of [amim][Tf2N] IL. On the other hand, the separation factor of the [amim][Tf2N] IL increases comparing to [mpim][Tf2N] IL. The NRTL model was used to correlate satisfactorily the experimental LLE data for the two studied ternary systems.  相似文献   

20.
Dehydrohalogenation of haloaromatics in ionic liquids derived from ethylmethylimidazolium or similar salts has been performed using Pd? C, Pd(OAc)2 and other catalysts using formate salts as a hydrogen source. In the ionic liquid [emim][BF4], chlorobenzene was dehalogenated by up to 40%, bromobenzene up to 25% and iodobenzene up to 41% in 2 h. Reactions in the absence of the ionic liquid were also performed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号