首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a recent paper (Radiation Physics and Chemistry, 2005, vol. 74, pp. 210) it was suggested that the anomalous increase of molecular hydrogen radiolysis yields observed in high-temperature water is explained by a high activation energy for the reaction H+H2O→H2+OH. In this comment we present thermodynamic arguments to demonstrate that this reaction cannot be as fast as suggested. A best estimate for the rate constant is 2.2×103 M−1 s−1 at 300 °C. Central to this argument is an estimate of the OH radical hydration free energy vs. temperature, ΔGhyd(OH)=0.0278t−18.4 kJ/mole (t in °C, equidensity standard states), which is based on analogy with the hydration free energy of water and of hydrogen peroxide.  相似文献   

2.
The surface region of sulfate aerosols (supercooled aqueous concentrated sulfuric acid solutions) is the likely site of a number of important heterogeneous reactions in various locations in the atmosphere, but the surface region ionic composition is not known. As a first step in exploring this issue, the first acid ionization reaction for sulfuric acid, H2SO4 + H2O HSO4 + H3O+, is studied via electronic structure calculations at the Hartree–Fock level on an H2SO4 molecule embedded in the surface region of a cluster containing 33 water molecules. An initial H2SO4 configuration is selected which could produce H3O+ readily available for heterogeneous reactions, but which involves reduced solvation and is consistent with no dangling OH bonds for H2SO4. It is found that at 0 K and with zero-point energy included, the proton transfer is endothermic by 3.4 kcal/mol. This result is discussed in the context of reactions on sulfate aerosol surfaces and, further, more complex calculations.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

3.
《Fluid Phase Equilibria》2004,224(2):251-256
In this work, experimental liquid–liquid equilibria (LLE) of the limonene + ethanol + water system are presented. The LLE of this system has been measured at 293.15, 303.15, 313.15 and 323.15 K. The equilibrium data presented are correlated using NRTL and UNIQUAC equations. Finally, the reliability of these models is tested by comparison with experimental results.  相似文献   

4.
The reactive collision process H(+) + D(2)(ν = 0, j = 0) → HD + D(+) is theoretically analyzed for collision energies ranging from threshold up to 1.3 eV. It is assumed that the reaction takes place via formation of a collision complex. In calculations, a statistical theory is used, based on a mean isotropic potential deduced from a full potential energy surface. Calculated integral cross sections, opacity functions, and rotational distributions of the HD products are compared with recent statistical and quantum mechanical calculations performed using a full potential energy surface. Satisfactory agreement between the results obtained using the two statistical methods is found, both of which however overestimate the existing quantum mechanical predictions. The effects due to the presence of identical particles are also discussed.  相似文献   

5.
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.  相似文献   

6.
The collision complex formed from a vibrationally excited reactant undergoes redissociation to the reactant, intramolecular vibrational relaxation (randomization of vibrational energy), or chemical reaction to the products. If attractive interaction between the reactants is large, efficient vibrational relaxation in the complex prevents redissociation to the reactants with the initial vibrational energy, and the complex decomposes to the reactants with low vibrational energy or converts to the products. In this paper, we have studied the branching ratios between the intramolecular vibrational relaxation and chemical reaction of an adduct HO(v)-CO formed from OH(X(2)Π(i)) in different vibrational levels v = 0-4 and CO. OH(v = 0-4) generated in a gaseous mixture of O(3)/H(2)/CO/He irradiated at 266 nm was detected with laser-induced fluorescence (LIF) via the A(2)Σ(+)-X(2)Π(i) transition, and H atoms were probed by the two-photon excited LIF technique. From the kinetic analysis of the time-resolved LIF intensities of OH(v) and H, we have found that the intramolecular vibrational relaxation is mainly governed by a single quantum change, HO(v)-CO → HO(v-1)-CO, followed by redissociation to OH(v-1) and CO. With the vibrational quantum number v, chemical process from the adduct to H + CO(2) is accelerated, and vibrational relaxation is decelerated. The countertrend is elucidated by the competition between chemical reaction and vibrational relaxation in the adduct HOCO.  相似文献   

7.
《Chemical physics letters》2003,367(1-2):177-185
This Letter is part of an effort to use the Curl equations to calculate non-adiabatic coupling terms, subject to ab initio boundary conditions. As examples we consider two-state, planar, systems characterized by two coordinates, θ and q and treat the corresponding non-adiabatic coupling terms, namely, τθ(q,θ) and τq(q,θ). The theory, which yields τq(q,θ) once τθ(q,θ) is given, is applied to three cases: an analytical model and two ab initio treatments – one for the C2H molecule and one for the H+H2 molecular system. In all three cases encouraging agreements were obtained between the theoretical τq(q,θ) values and the ab initio ones.  相似文献   

8.
9.
The stereodynamics of the O + HCl → ClO + H reaction are investigated by quasi-classical trajectory (QCT) method. The calculations are carried out on the ground 1 1 A′ potential energy surface (PES). The orientation and alignments of the product rotational angular momentum for the title reaction are reported. The influence of collision energy on the product vector properties is also studied in the present work. Four (2π/σ)(dσ00/dω t ), (2π/σ)(dσ20/dω t ), (2π/σ)(dσ22+/dω t ), and (2π / σ)(dσ21−/dω t ), and have been calculated in the center of mass frame.  相似文献   

10.
Thermal rate constants and kinetic isotope effects for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The obtained results are in good agreement with experimental measurements at high temperatures. The detailed investigation reveals that the anharmonicity of the hindered internal rotation motion does not influence the rate too much compared to its harmonic oscillator approximation. However, the motion of the nonreactive methyl group in C(2)H(6) significantly enhances the rates compared to its rigid case, which makes conventional reduced-dimensionality calculations a challenge. In addition, the temperature dependence of kinetic isotope effects is also revealed.  相似文献   

11.
The HO(2) + HO(2) → H(2)O(2) + O(2) chemical reaction is studied using statistical rate theory in conjunction with high level ab initio electronic structure calculations. A new theoretical rate coefficient is generated that is appropriate for both high and low temperature regimes. The transition state region for the ground triplet potential energy surface is characterized using the CASPT2/CBS/aug-cc-pVTZ method with 14 active electrons and 10 active orbitals. The reaction is found to proceed through an intermediate complex bound by approximately 9.79 kcal/mol. There is no potential barrier in the entrance channel, although the free energy barrier was determined using a large Monte Carlo sampling of the HO(2) orientations. The inner (tight) transition state lies below the entrance threshold. It is found that this inner transition state exhibits two saddle points corresponding to torsional conformations of the complex. A unified treatment based on vibrational adiabatic theory is presented that permits the reaction to occur on an equal footing for any value of the torsional angle. The quantum tunneling is also reformulated based on this new approach. The rate coefficient obtained is in good agreement with low temperature experimental results but is significantly lower than the results of shock tube experiments for high temperatures.  相似文献   

12.
In the temperature range 873–1123 K, transport numbers of oxygen ions and protons are determined in the system (H2 + H2O), Me/BaCe0.9Nd0.1O3-α/Me,(H2 + H2O), where Me = Ag, Au, Pt, Ni, by the emf and current methods. The determined transport numbers are independent of the determination method, the electrode material, the current direction (anodic and cathodic polarization of the electrode), polarizability of electrodes, and the partial water (hydrogen) pressure in the gas phase. This unambiguously suggests that the transport numbers refer to the solid electrolyte, and not the electrochemical system as a whole. It also follows that partial currents of the hydrogen ionization and the oxygen ion discharge are determined by the transport numbers of protons and oxygen ions in the electrolyte. At a constant temperature, their ratio is affected by neither the electrode potential nor the gas phase composition, i.e., both electrode reactions have a common limiting step (or steps). Deceased.  相似文献   

13.
 The geometry of the transition state of the title reaction was optimized at the unrestricted Hartree–Fock, the spin-unrestricted second-order M?ller–Plesset, and the spin-unrestricted quadratic configuration interaction with all single and double substitutions levels of theory. The changes in the geometry, the bound vibrational modes, and the potential energy along the minimum energy path are discussed. Variational transition-state theory rate constants calculated with the tunneling and curvature effect correction agree very well with the experimental values. Received: 23 April 1999 / Accepted: 9 June 1999 / Published online: 15 December 1999  相似文献   

14.
First accurate quantum mechanical scattering calculations have been carried out for the S((3)P)+OH(X?(2)Π)→SO(X?(3)Σ(-))+H((2)S) reaction using a recent ab initio potential energy surface for the ground electronic state, X?(2)A("), of HSO. Total and state-to-state reaction probabilities for a total angular momentum J=0 have been determined for collision energies up to 0.5 eV. A rate constant has been calculated by means of the J-shifting approach in the 10-400 K temperature range. Vibrational and rotational product distributions show no specific behavior and are consistent with a mixture of direct and indirect reaction mechanisms.  相似文献   

15.
The substrate selectivity in the hydroxylation of methylbenzenes in the H2O2−H2SO4 (70 wt.%) system was studied at 15–55 °C. The activation entropy correlates with the basicity of the arenes, while the substrate selectivity and activation enthalpy correspond both with the basicity and ionization potentials of ArH. We concluded that the structure of the reaction transition state is intermediate between a charge transfer complex and σ-complex. L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, 70 R. Lyuksemburg ul., Donetsk 340114, Ukraine. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 35, No. 1, pp. 39–43, January–February, 1999.  相似文献   

16.
RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ?mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ~4 kJ?mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.  相似文献   

17.
The enthalpies of dissolution of sodium metavanadate dihydrate in aqueous solutions of chloric acid and sodium perchlorate were measured by calorimetry at 298.15 K at ionic strengths of I = 0.3, 0.4, 0.5, 0.6, and 1.0 M. The standard formation enthalpy of the VO 2 + ion in aqueous solution was calculated from the resulting experimental data.  相似文献   

18.
19.
The hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ar complex with two quanta of CN stretch (v(CN) = 2), along with its ground state (v(CN) = 0), have been characterized by IR-UV double resonance and UV spectroscopy. Analysis of rotationally structured bands enable n(K) assignments and reveal perturbations due to Coriolis coupling between two closely spaced hindered rotor states, n(K) = 1(1) and 1(0). A deperturbation analysis is carried out to derive accurate rotational constants and their associated CN center-of-mass to Ar bond lengths as well as the magnitude of the coupling. The energetic ordering and spacings of the CN-Ar hindered rotor states provide a direct experimental probe of the angular dependence of the CN X (2)Σ(+) + Ar potential and permit radially averaged anisotropy parameters (V(10) = 5.2 cm(-1) and V(20) = 3.2 cm(-1)) to be determined. This analysis indicates a relatively flat potential about a linear N≡C-Ar configuration with a barrier to CN internal rotation of only ~12 cm(-1). The angular potentials determined from experiment and ab initio theory are in good accord, although theory predicts a higher barrier to CN internal rotation. A similar approach yields the infrared spectrum of H(2)-CN in the CN overtone region, which exhibits a rotationally resolved Σ ← Σ parallel band that is consistent with theoretical predictions for ortho-H(2)-CN.  相似文献   

20.
Rate coefficients for the mass extreme isotopologues of the H + H(2) reaction, namely, Mu + H(2), where Mu is muonium, and Heμ + H(2), where Heμ is a He atom in which one of the electrons has been replaced by a negative muon, have been calculated in the 200-1000 K temperature range by means of accurate quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations and compared with the experimental and theoretical results recently reported by Fleming et al. [Science 331, 448 (2011)]. The QCT calculations can reproduce the experimental and QM rate coefficients and kinetic isotope effect (KIE), k(Mu)(T)/k(Heμ)(T), if the Gaussian binning procedure (QCT-GB)--weighting the trajectories according to their proximity to the right quantal vibrational action--is applied. The analysis of the results shows that the large zero point energy of the MuH product is the key factor for the large KIE observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号