首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characteristics and optical spectra of Y(P,V)O4:Dy3+phosphors obtained by solid state reaction, sol-gel and hydrothermal routes have been investigated and compared. The luminescence features of these materials show a complicate dependence on the composition, synthetic method and excitation conditions. The emission performance depends on different effects: host luminescence, energy transfer to the doping ions and host dependence of the Dy3+ emission properties. These effects have been rationalized in order to provide useful information for the development of a suitable material for the white light emitting phosphors technology.  相似文献   

2.
Poly[(oligoethylene oxide) ethoxysilane)] ( I ) and poly[(oligoethylene oxide) ethoxysilane)]/(EuCl3)0.67 ( II ) were synthesized by reacting tetraethoxysilane with oligo(ethylene glycol) of molecular weight 400 and oligo(ethylene glycol)400/(EuCl3)0.317, respectively. The products so obtained are very transparent and rubbery. By Fourier transform infrared and Raman spectroscopy studies and by using analytical results it was concluded that these products are crosslinked macromolecular materials where the Si atom is bonded to one OEt group and to three poly(ethylene oxide) 400 chains. Scanning electronic microscopy studies showed that the presence of EuCl3 in polymer host significantly affects the morphology of the material. Laser luminescence investigations on (II) showed that Eu3+ ion in the polymer host is accommodated in two different types of sites having a distorted C2v symmetry. Moreover, the ionic conductivity of these systems was investigated and the data were satisfactorily fitted by the empirical Vogel Tamman Fulcher equation. At 70°C the conductivities of ( I ) and ( II ) were 9 × 10−6 and 14.3 × 10−6 Ω−1 cm−1 respectively.  相似文献   

3.
1,3‐Diphenyl‐1,3‐propanepione (DBM)‐functionalized SBA‐15 and SBA‐16 mesoporous hybrid materials (DBM‐SBA‐15 and DBM‐SBA‐16) are synthesized by co‐condensation of modified 1,3‐diphenyl‐1,3‐propanepione (DBM‐Si) and tetraethoxysilane (TEOS) in the presence of Pluronic P123 and Pluronic F127 as a template, respectively. The as‐synthesized mesoporous hybrid material DBM‐SBA‐15 and DBM‐SBA‐16 are used as the first precursor, and the second precursor poly(methylacrylic acid) (PMAA) is synthesized through the addition polymerization reaction of the monomer methacrylic acid. These precursors then coordinate to lanthanide ions simultaneously, and the final mesoporous polymeric hybrid materials Ln(DBM‐SBA‐15)3PMAA and Ln(DBM‐SBA‐16)3PMAA (Ln=Eu, Tb) are obtained by a sol‐gel process. For comparison, binary lanthanide SBA‐15 and SBA‐16 mesoporous hybrid materials (denoted as Ln(DBM‐SBA‐15)3 and Ln(DBM‐SBA‐16)3) are also synthesized. The luminescence properties of these resulting materials are characterized in detail, and the results reveal that ternary lanthanide mesoporous polymeric hybrid materials present stronger luminescence intensities, longer lifetimes, and higher luminescence quantum efficiencies than the binary lanthanide mesoporous hybrid materials. This indicates that the introduction of the organic polymer chain is a benefit for the luminescence properties of the overall hybrid system. In addition, the SBA‐15 mesoporous hybrids show an overall increase in luminescence lifetime and quantum efficiency compared with SBA‐16 mesoporous hybrids, indicating that SBA‐15 is a better host material for the lanthanide complex than mesoporous silica SBA‐16.  相似文献   

4.
The apoferritin protein and apoferritin–Tb3+ complex were demonstrated to form oligomeric and polymeric self‐assemblies in neutral aqueous solutions, based on characterization by using luminescence and UV/Vis spectroscopy, dynamic light scattering, and transmission electron microscopy. Addition of a 20‐mer or higher poly(arginine) to the solution resulted in coprecipitation through nanoscale interactions, while biological proteins and other poly(amino acids) rarely yielded precipitates under the conditions employed. The apoferritin–Tb3+ complex assembly exhibited a particularly long‐lived green luminescence in aqueous solution, and its poly(arginine)‐selective precipitation behavior was followed by monitoring the changes in luminescence. The poly(arginine)‐tagged albumin precipitated selectively and quantitatively, so that the apoferritin–Tb3+ complex can function as a new luminescent biotool for the sensing of poly(arginine) and its protein conjugates.  相似文献   

5.
High-performance organic light-emitting diodes (OLEDs) that use phosphorescent and/or thermally activated delayed fluorescence emitters are capable of realizing 100 % electron-to-photon conversion. The host materials in these OLEDs play crucial roles in determining OLED performance. Carbazole derivatives are frequently used as host materials, among which 3,3-bis(9H-carbazol-9-yl)biphenyl ( mCBP ) is often used for lifetime testing in scientific studies. In this study, the π conjugation of the carbazole unit was expanded to enhance OLED lifetime by designing and developing two benzothienocarbazole (BTCz)-based host materials, namely m1BTCBP and m4BTCBP . Among these host materials, m1BTCBP formed a highly efficient [Ir(ppy)3]-based OLED with an operational luminescence half-life (LT50) of over 300 h at an initial luminance of approximately 12000 cd m−2 (current density: 25 mA cm−2). The LT50 value at 1000 cd cm−2 was estimated to be about 23 000 h. This performance is clearly higher than that of mCBP -based OLEDs (LT50≈8500 h).  相似文献   

6.
The ligand N2, N6-bis(2-hydroxyethyl)pyridine-2,6-dicarboxamide (L or BHPC) was synthesised by modification of 2,6-pyridinedicarboxylic acid then used to construct the lanthanide-based mesoporous material Tb-BHPC-SBA-15. In the structure of the resulting Tb-BHPC-SBA-15, lanthanide ions were chelated by the BHPC ligand and the Tb-BHPC complexes were anchored into the SBA-15 host formed by the reaction between the hydroxyl group and the active Si-OH. The mesoporous material Tb-BHPC-SBA-15 was characterised by UV, small-angle X-ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms and fluorescence spectra. The results indicate that the ligand and lanthanide ions were introduced into the SBA-15 host and the mesoporous material Tb-BHPC-SBA-15 exhibited the characteristic luminescence of Tb3+.  相似文献   

7.
Stimuli-responsive or smart materials have recently shown a significant impact on the frontier of material science and engineering. The exponential development of synthetic host molecules (SHMs) over the last decades and their corresponding host–guest chemistry, have empowered researchers with new opportunities to design and construct tailored or guest-specific smart materials. In this Minireview, we present the recent advancements in synthetic host based smart materials, ranging from the fabrication strategies to the state-of-art applications including adsorption, separation, luminescence, self-healing and actuation. The role that the host–guest chemistry plays in these systems is highlighted throughout to give a better prospective of the available possibilities for emerging materials of future economies.  相似文献   

8.
Herein, we report the preparation of zeolite NIR luminescence materials with a remarkable increase of luminescence intensity by attaching stopper molecule (an imidazolium salt) to the channel entrances of zeolite L loading with NIR lanthanide (Er3+ or Nd3+) β‐diketonate complexes. This results from the formation of Ln3+β‐diketonate complexes (Ln=Er or Nd) with high coordination numbers through the decreasing of the proton strength in the zeolite channels. The obtained materials were characterized with SEM and photoluminescence spectroscopy. We believe that this hybrid material will be an appealing candidate for the applications of optical fiber, telecommunications and bio‐imaging.  相似文献   

9.
In this work, for the first time, control over the position of maximum emission peak for fluorophore, using embedded tris(8-hydroxyquinoline) aluminum (AlQ3) complexes into different types of host materials, can be achieved. Moreover, the environmental and concentration effects on luminescent properties were studied. In this regard, different concentrations of AlQ3 were embedded into the poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-PBuA) nanoparticles as organic host materials by emulsion polymerization. It is established that the dilution of AlQ3 in the polymer matrix leads to blue-shift of the luminescence maximum up to 0.32 eV compared to pure AlQ3. Moreover, AlQ3 was embedded in SBA-15 type mesoporous silica as an inorganic host material by physical adsorption. Finally, this functionalized mesoporous silica was incorporated into PMMA-co-PBuA transparent matrix by blending method to obtain Co-Poly-AlQ3-SBA-15 as organic–inorganic composite material. It was found that there is no significant wavelength shift on the maximum emission peak of the organic–inorganic composite at various concentrations of AlQ3-SBA-15. The prepared materials were characterized by powder X-ray diffraction (XRD), N2 adsorption–desorption, NMR, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and fluorescence spectra.  相似文献   

10.
Ternary organic/inorganic/polymeric hybrid material PVP-Eu-(DBM-Si)3 (DBM = dibenzoylmethane; PVP = poly(4-vinylpyridine)) have been synthesized through the coordination bonds. The precursor DBM-Si is obtained by the modification of DBM molecule with a cross-linking reagent TEPIC (3-(triethoxysilyl)-propyl isocyanate), which is used to form the inorganic Si–O–Si networks with TEOS (tetraethoxysilane) after a hydrolysis and polycondensation process. PVP, which is obtained through the polymerization reaction using 4-vinylpyridine as the monomer in the presence of BPO (benzoyl peroxide), is used to form the organic polymeric C–C chains. For comparison, the binary organic/inorganic hybrid material Eu-(DBM-Si)3 was also synthesized simultaneously. FT-IR (Fourier-transform infrared spectra), UV (ultraviolet absorption spectra), UV-DR (ultraviolet–visible diffuse reflection absorption spectra), SEM (scanning electron micrograph), PL (photoluminescence spectroscopy) and LDT (luminescence decay time) measurements are used to investigate the physical properties of the obtained hybrid materials. The results reveal that the ternary hybrids presents more regular morphology, higher red/orange ratio, stronger luminescent intensity, higher 5D0 luminescence quantum efficiency and longer lifetime than the binary one, suggesting the property of the overall hybrid system is improved with the introduction of the organic polymer PVP.  相似文献   

11.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

12.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

13.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

14.
Searching for broadband near-infrared (NIR) materials with high efficiency and excellent thermal luminescence stability is of great significance because of their widespread spectroscopic applications. Different element substitution can modulate the structure and crystal field of host lattice so as to regulate the luminescent properties. Herein, we report the octahedron-dependent NIR luminescence in Cr3+-doped KMP2O7 (M = Ga, Sc, In, and Lu) phosphors and investigate the effect of octahedral environment on luminescent properties, aiming to provide guidance for host material selection. The decreased crystal field strength leads to the apparent spectral red shift from 815 to 900 nm for the samples of M = Ga to Lu. The small Stokes shift as well as weak electron–phonon coupling effect decreases the non-radiative transition probability and thus gives rise to the highest emission intensity and excellent thermal stability of Cr3+-doped KGaP2O7. The optimal sample, KGa0.89P2O7:0.11Cr3+, possesses an internal/external quantum efficiency of 55.8%/36.6%, and its integrated emission intensity at 423 K can maintain 68% of that at room temperature. Finally, we investigate the potential applications in non-destructive examination field by manufacturing a NIR phosphor-conversion light-emitting diode device.  相似文献   

15.
The synthesis of the Eu(III) complex 1.Eu and photophysical studies of this complex in solution are described. In water, the Eu(III) luminescence was ‘switched on’ in the presence of H+, with large enhancements in the Eu(III) luminescence. The complex was then incorporated into poly[methylmethacrylate-co-2-(hydroxyethylmethacrylate)]-based hydrogels and the luminescent properties of the resulting polymeric films were investigated using confocal laser-scanning microscopy as well as using steady-state luminescence. The luminescence was shown to be ‘switched on’ in the soft material after adjusting the pH of the solution in which the 1.Eu-incorporated film was immersed from alkaline to acid.  相似文献   

16.
One-dimensional BaSiF6:Yb3+(20%)/Tm3+(1.2%) nanorods were synthesized by a facile microemulsion method for the first time. X-ray topographic analysis found that the nanorods have a pure rhombohedral structure. Under 980 nm excitation, bright-blue upconversion luminescence was presented in the nanorods, indicating that BaSiF6 is a new host material for producing desirable upconversion luminescence.  相似文献   

17.
A new dual luminescent sensitive paint for barometric pressure and temperature (T) is presented. The green‐emitting iridium(III) complex [Ir(ppy)2(carbac)] (ppy=2‐phenylpyridine; carbac=1‐(9H‐carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐dione) was applied as a novel probe for T along with the red‐emitting complex [Ir(btpy)3], (btpy=2‐(benzo[b]thiophene‐2‐yl)pyridine) which functions as a barometric (in fact oxygen‐sensitive) probe. Both iridium complexes were dissolved in different polymer materials to achieve optimal responses. The probe [Ir(ppy)2(carbac)] was dispersed in gas‐blocking poly(acrylonitrile) microparticles in order to suppress any quenching of its luminescence by oxygen. The barometric probe [Ir(btpy)3], in turn, was incorporated in a cellulose acetate butyrate film which exhibits good permeability for oxygen. The effects of temperature on the response of the oxygen probe can be corrected by simultaneous optical determination of T, as the poly(acrylonitrile) microparticles containing the temperature indicator are incorporated into the film. The phosphorescent signals of the probes for T and barometric pressure, respectively, can be separated by optical filters due to the ≈75 nm difference in their emission maxima. The dual sensor is applicable to luminescence lifetime imaging of T and barometric pressure. It is the first luminescent dual sensor material for barometric pressure/T based exclusively on the use of IrIII complexes in combination with luminescence lifetime imaging.  相似文献   

18.
Ligand N2,N6‐bis(2‐hydroxyethyl)pyridine‐2,6‐dicarboxamide (L=BHPC) was synthesized and used to construct lanthanide‐based mesoporous material Eu‐L‐MCM‐41. In the structure of resulting Eu‐L‐MCM‐41, Eu3+ was chelated by BHPC, and the Eu‐L complexes were anchored into the forming MCM‐41 host by the reaction between the hydroxyl group and active Si‐OH. The mesoporous material Eu‐L‐MCM‐41 was characterized by UV, IR, small‐angle X‐ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms, TGA and fluorescence spectra. The results indicate that ligand and Eu3+ have been introduced into the MCM‐41 host, and Eu‐L‐MCM‐41 exhibits characteristic luminescence of Eu3+.  相似文献   

19.
Polyoxometalates (POMs) are an emerging class of materials which can be considered as inorganic complexes with distinct structural and optical characteristics. To be suitable in biomedical applications such as imaging, the materials may need to be embedded in a suitable host material, which may affect the optical properties of the emitting polyoxometalate. Here, we demonstrate that POMs can successfully be included into a sol-gel derived silica matrix. We report on the effects of one such potential host on the luminescence excitation and emission spectra, as well as the POM luminescence decay times. It appears that the POMs do not interact with the bulk oxide of the matrix, but are retained within the hosts' internal pore structure.  相似文献   

20.
The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength-dependent (Ex-De) PL. Consequently, the wider application of Ln3+ ions in light-emitting devices is hindered. In this study, we present an organic–inorganic compound, (DMA)4LnCl7 (DMA+=[CH3NH2CH3]+, Ln3+=Ce3+, Tb3+), which serves as an independent host lattice material for efficient Ex-De emission by doping it with trivalent antimony (Sb3+). The pristine (DMA)4LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90–100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex-De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host-sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+, each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex-De emitters based on Ln3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号