首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

2.
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

3.
This paper considers a coordinated scheduling problem. For the first-stage transportation there is a crane available to transport the product from the warehouse to a batching machine. For the second-stage transportation there is a vehicle available to deliver the completed jobs from the machine shop floor to the customer. The coordinated scheduling problem of production and transportation deals with sequencing the transportation of the jobs and combining them into batches to be processed. The problem of minimizing the sum of the makespan and the total setup cost was proven by Tang and Gong [1] to be strongly NP-hard. This paper proposes two genetic algorithm (GA) approaches for this scheduling problem, with different result representations. The experimental results demonstrate that a regular GA and a modified GA (MGA) can find near-optimal solutions within an acceptable amount of computational time. Among the two proposed metaheuristic approaches, the MGA is superior to the GA both in terms of computing time and the quality of the solution.  相似文献   

4.
井彩霞  张磊  刘烨 《运筹与管理》2014,23(4):133-138
考虑需要安装时间的平行多功能机排序问题。在该模型中,每个工件对应机器集合的一个子集,其只能在这个子集中的任一台机器上加工,称这个子集为该工件的加工集合;工件分组,同组工件具有相同的加工时间和加工集合,不同组中的工件在同一台机器上连续加工需要安装时间,目标函数为极小化最大完工时间。对该问题NP-难的一般情况设计启发式算法:首先按照特定的规则将所有工件组都整组地安排到各台机器上,然后通过在各机器间转移工件不断改进当前最大完工时间。通过与下界的比较检验算法的性能,大量的计算实验表明,算法是实用而有效的。  相似文献   

5.
近年来,工件的运输和加工协作排序问题在物流和供应链管理领域得到广泛关注. 讨论了先用 $\ m$ 台车辆将工件从等待区域运输到继列分批处理机处, 再进行分批加工的协作排序问题, 加工一批工件需要支付一定的费用, 目标为最小化工件的总完工时间与批的加工费用之和. 在工件的加工时间都相等的情况下, 如果工件运输方案确定, 给出了多项式时间的动态规划算法; 如果工件运输方案不确定, 证明了该问题是{\, NP}-难的, 给出了车辆返回时间 $\ t=0$ 时, 最差性能比等于 $\ 2-\frac{1}{m}$ 的近似算法.  相似文献   

6.
研究具有两个不相容工件族单位工件单机有界平行分批的在线排序问题.工件按时在线到达,目标是最小化最大完工时间.在有界平行分批排序中,容量有限制机器最多可将b个工件形成一批同时加工,每个工件及每一批的加工时间为1.不相容工件族是指来自不同工件组的工件不能放在同一批加工.对该问题提供了一个竞争比为√17+3/4的最好可能的在线算法.  相似文献   

7.
This paper investigates a new problem, called single machine scheduling with multiple job processing ability, which is derived from the production of the continuous walking beaming reheating furnace in iron and steel industry. In this problem, there is no batch and the jobs enter and leave the machine one by one and continuously, which is different from general single machine batch scheduling problem where the jobs in a batch share the same start and departure time. Therefore, the start time and the departure time of a job depend on not only the job sequence but also the machine capacity. This problem is also different from the single semi-continuous batching machine scheduling recently studied in the literature, where the jobs are processed in batch mode and a new batch cannot be started for processing until the processing of the previous batch is completed though jobs in the same batch enter and leave the machine one by one. The objective of this problem is to minimize the makespan. We formulate this problem as a mixed integer linear programming model and propose a particle swarm optimization (PSO) algorithm for this problem. Computational results on randomly generated instances show that the proposed PSO algorithm is effective.  相似文献   

8.
In this paper, we address the problem of parallel batching of jobs on identical machines to minimize makespan. The problem is motivated from the washing step of hospital sterilization services where jobs have different sizes, different release dates and equal processing times. Machines can process more than one job at the same time as long as the total size of jobs in a batch does not exceed the machine capacity. We present a branch and bound based heuristic method and compare it to a linear model and two other heuristics from the literature. Computational experiments show that our method can find high quality solutions within short computation time.  相似文献   

9.
研究具有前瞻区间的两个不相容工件组单位工件单机无界平行分批在线排序问题.工件按时在线到达, 目标是最小化最大完工时间. 在无界平行分批排序中, 一台容量无限制机器可将多个工件形成一批同时加工, 每一批的加工时间等于该批中最长工件的加工时间. 具有前瞻区间是指在时刻t, 在线算法能预见到时间区间(t,t+\beta]内到达的所有工件的信息.不可相容的工件组是指属于不同组的工件不能安排在同一批中加工.对该问题提供了一个竞争比为\ 1+\alpha 的最好可能的在线算法,其中\ \alpha 是方程2\alpha^{2}+(\beta +1)\alpha +\beta -2=0的一个正根, 这里0\leq \beta <1.  相似文献   

10.
考虑的问题是在添加工资费用或包装费用等附加的分批费用下,如何使单机平行分批中总完工时间和分批费用之和达到最小.首先我们假定工件和批处理机都在零时刻到达,工件被成批地进行加工,一旦开始加工就不允许中断,每批的加工时间等于该批中最大的加工时间,而且假设每分一批都产生一个分批费用.然后对具有m个不同的加工时间,批容量有界且为固定值b的情形下目标函数为∑C_j与分批费用之和这一排序问题,利用动态规划的方法给出了多项式时间算法,时间界为O(b2m2m2222m).  相似文献   

11.
Each of n jobs is to be processed without interruption on a single machine which can handle only one job at a time. Each job becomes available for processing at its release date, requires a processing time and has a positive weight. Given a processing order of the jobs, the earliest completion time for each job can be computed. The objective is to find a processing order of the jobs which minimizes the sum of weighted completion times. In this paper a branch and bound algorithm for the problem is derived. Firstly a heuristic is presented which is used in calculating the lower bound. Then the lower bound is obtained by performing a Lagrangean relaxation of the release date constraints; the Lagrange multipliers are chosen so that the sequence generated by the heuristic is an optimum solution of the relaxed problem thus yielding a lower bound. A method to increase the lower bound by deriving improved constraints to replace the original release date constraints is given. The algorithm, which includes several dominance rules, is tested on problems with up to fifty jobs. The computational results indicate that the version of the lower bound using improved constraints is superior to the original version.  相似文献   

12.
We consider the problem of scheduling jobs with release times and non-identical job sizes on a single batching machine; our objective is to minimize makespan. We present an approximation algorithm with worst-case ratio 2+ε, where ε>0 can be made arbitrarily small.  相似文献   

13.
We present on-line algorithms to minimize the makespan on a single batch processing machine. We consider a parallel batching machine that can process up to b jobs simultaneously. Jobs in the same batch complete at the same time. Such a model of a batch processing machine has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We deal with the on-line scheduling problem when jobs arrive over time. We consider a set of independent jobs. Their number is not known in advance. Each job is available at its release date and its processing requirement is not known in advance. This general problem with infinite machine capacity is noted 1∣p − batch, rj, b = ∞∣Cmax. Deterministic algorithms that do not insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on LPT achieved this bound [Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136]. If we are allowed to postpone start of jobs, the performance guarantee can be improved to 1.618. We provide a simpler proof of this best known lower bound for bounded and unbounded batch sizes. We then present deterministic algorithms that are best possible for the problem with unbounded batch size (i.e., b = ∞) and agreeable processing times (i.e., there cannot exist an on-line algorithm with a better performance guarantee). We then propose another algorithm that leads to a best possible algorithm for the general problem with unbounded batch size. This algorithm improves the best known on-line algorithm (i.e. [G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics 48 (2001) 241–258]) in the sense that it produces a shortest makespan while ensuring the same worst-case performance guarantee.  相似文献   

14.
Each of n jobs is to be processed without interruption on a single machine. Each job becomes available for processing at time zero, has a deadline by which it must be completed and has a positive weight. The objective is to find a processing order of the jobs which minimizes the sum of weighted completion times. In this paper a branch and bound algorithm for the problem is presented which incorporates lower bounds that are obtained using a new technique called the multiplier adjustment method. Firstly several dominance conditions are derived. Then a heuristic is described and sufficient conditions for its optimality are given. The lower bound is obtained by performing a Lagrangean relaxation of the deadline constraints; the Lagrange multipliers are chosen so that the sequence generated by the heuristic is an optimal solution of the relaxed problem, thus yielding a lower bound. The algorithm is tested on problems with up to fifty jobs.  相似文献   

15.
We study a problem of scheduling n jobs on a single machine in batches. A batch is a set of jobs processed contiguously and completed together when the processing of all jobs in the batch is finished. Processing of a batch requires a machine setup time dependent on the position of this batch in the batch sequence. Setup times and job processing times are continuously controllable, that is, they are real-valued variables within their lower and upper bounds. A deviation of a setup time or job processing time from its upper bound is called a compression. The problem is to find a job sequence, its partition into batches, and the values for setup times and job processing times such that (a) total job completion time is minimized, subject to an upper bound on total weighted setup time and job processing time compression, or (b) a linear combination of total job completion time, total setup time compression, and total job processing time compression is minimized. Properties of optimal solutions are established. If the lower and upper bounds on job processing times can be similarly ordered or the job sequence is fixed, then O(n3 log n) and O(n5) time algorithms are developed to solve cases (a) and (b), respectively. If all job processing times are fixed or all setup times are fixed, then more efficient algorithms can be devised to solve the problems.  相似文献   

16.
同时加工排序问题的分支定界法和启发式算法   总被引:2,自引:0,他引:2  
同时加工机器或者称为批加工机器是可以同时加工多个工件的机器.本文研究使带权总完工时间为最小的同时加工排序问题1|B|∑wjGj.这个问题的计算复杂性还没有解决.我们给出这个问题的精确解法——分支定界法和几个启发式算法,并且用较多实例对启发式算法的性能进行了比较.  相似文献   

17.
In this paper a problem of scheduling a single machine under linear deterioration which aims at minimizing the number of tardy jobs is considered. According to our assumption, processing time of each job is dependent on its starting time based on a linear function where all the jobs have the same deterioration rate. It is proved that the problem is NP-hard; hence a branch and bound procedure and a heuristic algorithm with O(n 2) is proposed where the heuristic one is utilized for obtaining the upper bound of the B&B procedure. Computational results for 1,800 sample problems demonstrate that the B&B method can solve problems with 28 jobs quickly and in some other groups larger problems are also solved. Generally, B&B method can optimally solve 85% of the samples which shows high performance of the proposed method. Also it is shown that the average value of the ratio of optimal solution to the heuristic algorithm result with the objective ??(1 ? Ui) is at most 1.11 which is more efficient in comparison to other proposed algorithms in related studies in the literature.  相似文献   

18.
This paper considers two scheduling problems for a two-machine flowshop where a single machine is followed by a batching machine. The first problem is that there is a transporter to carry the jobs between machines. The second problem is that there are deteriorating jobs to be processed on the single machine. For the first problem with minimizing the makespan, we formulate it as a mixed integer programming model and then prove that it is strongly NP-hard. A heuristic algorithm is proposed for solving this problem and its worst case performance is analyzed. The computational experiments are carried out and the numerical results show that the heuristic algorithm is effective. For the second problem, we derive the optimal algorithms with polynomial time for minimizing the makespan, the total completion time and the maximum lateness, respectively.  相似文献   

19.
We consider the problem of scheduling n jobs on an unbounded batching machine that can process any number of jobs belonging to the same family simultaneously in the same batch. All jobs in the same batch complete at the same time. Jobs belonging to different families cannot be processed in the same batch, and setup times are required to switch between batches that process jobs from different families. For a fixed number of families m, we present a generic forward dynamic programming algorithm that solves the problem of minimizing an arbitrary regular cost function in pseudopolynomial time. We also present a polynomial-time backward dynamic programming algorithm with time complexity O (mn(n/m+1) m ) for minimizing any additive regular minsum objective function and any incremental regular minmax objective function. The effectiveness of our dynamic programming algorithm is shown by computational experiments based on the scheduling of the heat-treating process in a steel manufacturing plant.  相似文献   

20.
This paper studies a general two-stage scheduling problem, in which jobs of different importance are processed by one first-stage processor and then, in the second stage, the completed jobs need to be batch delivered to various pre-specified destinations in one of a number of available transportation modes. Our objective is to minimize the sum of weighted job delivery time and total transportation cost. Since this problem involves not only the traditional performance measurement, such as weighted completion time, but also transportation arrangement and cost, key factors in logistics management, we thus call this problem logistics scheduling with batching and transportation (LSBT) problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号