首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydromagnetic heat transfer by mixed convection along an inclined continuously stretching surface, with power-law variation in the surface temperature or heat flux, in the presence of Hall current and internal heat generation/absorption has been studied. The surface is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a power-law. Two cases of the temperature boundary conditions were considered at the surface. The governing equations have been transformed into non-similar partial differential equations which have been integrated by the forth-order Runge–Kutta method. The effect of Hall parameter, magnetic parameter, dimensionless blowing/suction parameter, space and temperature dependent internal heat generation/absorption parameters and buoyancy force parameters on the temperature, primary and secondary flow velocity have been studied parametrically. All parameters involved in the problem affect the flow and thermal distributions except the temperature-dependent internal heat generation/absorption in the case of prescribed heat flux (PHF). Numerical values of the local skin-friction and the local Nusselt numbers for various parametric conditions have been tabulated.  相似文献   

2.
We consider a convective flow in a porous medium of an incompressible viscous conducting fluid impinging on a permeable stretching surface with suction, and internal heat generation/absorption. Using a similarity transformation the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations. We first examine a number of special cases for which we may obtain exact solutions. We then obtain analytical solutions (by the Homotopy Analysis Method) and numerical solutions (by a boundary value problem solver), in order to further study the behavior of the nonlinear differential equations, for various values of the physical parameters. Our numerical solutions are shown to agree with the available results in the literature. We then employ the numerical results to bring out the effects of the suction parameter, heat source/sink parameter, stretching parameter, porosity parameter, the Prandtl number and the free convection parameter on the flow and heat transfer characteristics. In the absence of suction and free convection, our findings are in agreement with the corresponding numerical results of Attia [H.A. Attia, On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation, Comput. Mater. Sci. 38 (2007) 741-745].  相似文献   

3.
The nonlinear magnetohydrodynamic (MHD) flow problem with Hall current caused by stretching surface having power law velocity distribution is solved by employing homotopy analysis method (HAM). Perturbation solution of stream function, the expression of skin friction coefficient and graphical results in absence of Hall current (Chiam, Int J Eng Sci 33 (1995), 429) are recovered as the limiting cases. It is found that unlike the solution obtained by Chiam (1995), the present results are valid for weak and large magnetic parameters. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 937–959, 2011  相似文献   

4.
In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption) and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.  相似文献   

5.
An analysis is carried out to study the flow, chemical reaction and mass transfer of a steady laminar boundary layer of an electrically conducting and heat generating fluid driven by a continuously moving porous surface embedded in a non-Darcian porous medium in the presence of a transfer magnetic field. The governing partial differential equations are converted into ordinary differential equations by similarity transformation and are solved numerically by using the finite element method. The results obtained are presented graphically for velocity, temperature and concentration profiles, as well as the Sherwood number for various parameters entering into the problem.  相似文献   

6.
In this paper, the problem of unsteady laminar two-dimensional boundary layer flow and heat transfer of an incompressible viscous fluid in the presence of thermal radiation, internal heat generation or absorption, and magnetic field over an exponentially stretching surface subjected to suction with an exponential temperature distribution is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. New numerical method using Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.  相似文献   

7.
The unsteady Couette–Poiseuille flow of an electrically conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained using finite difference approximations. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.  相似文献   

8.
This paper describes the unsteady flow with heat and mass transfer characteristics in a third grade fluid bounded by a stretching sheet. The resulting problems are solved by means of homotopy analysis method (HAM). Convergence of derived series solutions is explicitly discussed. Graphical results for various interesting parameters are presented and analyzed.  相似文献   

9.
Analysis has been conducted to analyze the stagnation point flow of nanofluid near a permeable stretched surface with convective boundary condition. The relevant problem formulation is presented in the presence of porous medium and internal heat generation/absorption. The effects of Brownian motion and thermophoresis occur in the transport equations. The velocity, temperature and nanoparticle concentration profiles are analyzed with respect to the involved parameters of interest namely Brownian motion parameters, thermophoresis parameter, permeability parameter, source/sink parameter, ratio of rate constants to free stream velocity and stretching velocity, Biot number and Prandtl number. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.  相似文献   

10.
An analysis is presented for unsteady two-dimensional flow of a Maxwell fluid over a stretching surface in presence of a first order constructive/destructive chemical reaction. Using suitable transformations, the governing partial differential equations are converted to ordinary one and are then solved numerically by shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. Fluid velocity initially decreases with increasing unsteadiness parameter and concentration decreases significantly due to unsteadiness. The effect of increasing values of the Maxwell parameter is to suppress the velocity field. But the concentration is enhanced with increasing Maxwell parameter.  相似文献   

11.
Analytical solutions for heat and mass transfer by laminar flow of a Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously vertical permeable surface in the presence of a radiation, a first-order homogeneous chemical reaction and the mass flux are reported. The plate is assumed to move with a constant velocity in the direction of fluid flow. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Graphical results for velocity, temperature and concentration profiles of both phases based on the analytical solutions are presented and discussed.  相似文献   

12.
In this paper, the problem of magneto-micropolar fluid flow, heat and mass transfer with suction and blowing through a porous medium is analyzed numerically. This problem was studied under the effects of chemical reaction, Hall, ion-slip currents, variable viscosity and variable thermal diffusivity. The governing fundamental equations are approximated by a system of non-linear ordinary differential equation. This system is solved numerically by using the Chebyshev pseudospectral method. Details of the velocities, temperature and concentration fields as well as the local skin-friction, the local Nusselt number and the local Sherwood number for the various values of the parameters of the problem are presented. The numerical results indicate that, the concentration decreases as the permeability parameter, the chemical reaction parameter and Schmidt number increase and it increases as variable viscosity and variable thermal diffusivity increase. The local Nusselt number and the local Sherwood number decrease as the magnetic field and ion-slip current parameters increase, whereas they increase as Hall current parameter increases. Also, there is a (non-linear) strong dependency of the concentration gradient at the wall on both Schmidt number and the mass transfer parameter.  相似文献   

13.
The problem of combined, natural and forced convection for the laminar flow in a vertical channel of equilateral triangular cross-section is discussed. Internal heat generation is assumed to be uniform. The coupled equations in velocity and temperature are solved using equitriangular transform. Expressions for pressure drop parameter and Nusselt number are obtained and their behaviour for different values of Rayleigh number and heat generation function, is studied.  相似文献   

14.
The effect of internal heat generation on free convection along a vertical plate embedded in a nanofluid saturated non-Darcy porous medium in the presence of suction/injection is analyzed. The non-linear governing equations and their associated boundary conditions are initially cast into dimensionless forms by non-dimensional variables. The resulting equations are solved numerically by an accurate, implicit, iterative finite-difference methodology and the obtained results are compared favorably with previously published work. A parametric study is performed to illustrate influence of the temperature exponent, non-Darcy, suction/injection, Brownian motion and thermophoresis parameters on the profiles of the velocity components, temperature and nanoparticle volume fraction. The numerical data for the heat and nanoparticle mass transfer rates have been tabulated for various parametric conditions.  相似文献   

15.
This paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of a visco-elastic fluid over a linearly stretching continuous surface with variable wall temperature subjected to suction or blowing. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or absorption. An analysis has been carried out for two different cases of heating processes namely: (i) Prescribed surface temperature (PST) and (ii) Prescribed wall heat flux (PHF) to get the effect of visco-elastic parameter for various situations. Further increase of visco-elastic parameter is to decrease the skin friction on the sheet. The solutions for the temperature and the heat transfer characteristics are obtained in terms of Kummers function. Received: June 16, 2004; revised: February 8, 2005  相似文献   

16.
The effect of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media has been studied in the presence of radiation and magnetic field. The plate surface is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or blowing and has a power-law variation of both the wall temperature and concentration. The similarity solution is used to transform the system of partial differential equations, describing the problem under consideration, into a boundary value problem of coupled ordinary differential equations, and an efficient numerical technique is implemented to solve the reduced system. Numerical calculations are carried out, for various values of the dimensionless parameters of the problem, which include a variable viscosity, chemical reactions, radiation, magnetic field, porous medium and power index of the wall temperature parameters. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The results are presented graphically and the conclusion is drawn that the flow field and other quantities of physical interest are significantly influenced by these parameters.  相似文献   

17.
The effect of variable viscosity on laminar mixed convection flow and heat transfer along a semi-infinite unsteady stretching sheet taking into account the effect of viscous dissipation is studied. The flow of the fluid and subsequent heat transfer from the stretching surface is investigated with the aid of suitable transformation variables. Solutions for the velocity and temperature fields are obtained for some representative values of the unsteadiness parameter, variable viscosity parameter, mixed convection parameter and Eckert number. Typical velocity and temperature profiles, the local skin friction coefficient and the local heat transfer rate are presented at selected controlling parameters.  相似文献   

18.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

19.
In the present analysis, we study the steady mixed convection boundary layer flow of an incompressible Maxwell fluid near the two-dimensional stagnation-point flow over a vertical stretching surface. It is assumed that the stretching velocity and the surface temperature vary linearly with the distance from the stagnation-point. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. Analytical and numerical solutions of the derived system of equations are developed. The homotopy analysis method (HAM) and finite difference scheme are employed in constructing the analytical and numerical solutions, respectively. Comparison between the analytical and numerical solutions is given and found to be in excellent agreement. Both cases of assisting and opposing flows are considered. The influence of the various interesting parameters on the flow and heat transfer is analyzed and discussed through graphs in detail. The values of the local Nusselt number for different physical parameters are also tabulated. Comparison of the present results with known numerical results of viscous fluid is shown and a good agreement is observed.  相似文献   

20.
The effect of temperature-dependent density on MHD mixed convection flow of power-law fluid past a moving semi-infinite vertical plate for high temperature differences between the plate and the ambient fluid is studied. The fluid density is assumed to decrease exponentially with temperature. The usual Boussinesq approximations are not considered due to the large temperature differences. The surface temperature of the moving plate was assumed to vary according to a power-law form, that is, Tw(x) = T + Axγ. The fluid is permeated by a uniform magnetic field imposed perpendicularly to the plate on the assumption of small magnetic Reynolds number. A numerical shooting algorithm for two unknown initial conditions with fourth-order Runge–Kutta integration scheme has been used to solve the coupled non-linear boundary value problem. The effects of various parameters on the velocity and temperature profiles as well as the local skin-friction coefficient and the local Nusselt number are presented graphically and in the tabular form. The results show that application of Boussinesq approximations in a non-Newtonian fluid subjected to high temperature differences gives a significant error in the values of the skin-friction coefficient and the application of an external magnetic field reduces this error markedly in the case of shear-thickening fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号