首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel oxy-sulfide glass system xPbS-(73 ? x) Bi2O3–27B2O3 with 6.06 ≤ x ≤ 36.35 named lead sulfide bismuth borate (LSBB) was prepared using normal melt and quench-casting technique. Phase transition temperatures t g, t x, t pi, and t l were noted from the DTA curves. Glass transition temperature t g varied from 306 ± 2 to 336 ± 2 °C and the onset of crystallization temperatures t x was between 331 ± 2 and 402 ± 2 °C. The glasses melted in the range 523 ± 2 to 597 ± 2 °C. The ratio t g /t l showed that compositions reported conform to the two-third law of glass formation. Hruby’s coefficient H r witnessed the thermal stability of the system and that LSBB4 was most stable and glass formability factor k gl showed that composition LSBB1–LSBB6 can easily corroborate vitreous state. The direct band gap energy varied from 1.56 to 3.07 eV, while indirect band gap energy for the fundamental absorption edge was 0.21–1.31 eV. Absorption edges obeyed Urbach rule. A broad range of band tailing was exhibited confirming amorphous state of the system.  相似文献   

2.
Li3Ni x V2?x (PO4)3/C (x?=?0, 0.02, 0.04 and 0.06) samples have been synthesized via an improved sol–gel method. X-ray diffraction patterns indicate that the structure of the prepared samples retains monoclinic, and the single phase has not been changed with Ni doping. From the analysis of electrochemical performance, the Li3Ni0.04?V1.96(PO4)3/C sample exhibits the best electrochemical property. It delivers a discharge capacity of 112.1 mAh?g?1 with capacity retention of 95.2 % over 300 cycles at 10 C rate in the range of 3.0–4.8 V; cyclic voltammetry and electrochemical impedance spectra testing further prove that the electrochemical reversibility and lithium ion diffusion behavior of Li3V2(PO4)3 have also been effectively improved through Ni doping.  相似文献   

3.
Pentafluoropyridine has been analysed in the frequency range of 8 to 18 GHz at dry ice temperature, using a conventional 100 kHz Stark modulated microwave spectrometer. The rotational constants and centrifugal distortion constants are A = 1481.539 ± 0.003 MHz, B = 1075.348 ± 0.004 MHz and C = 623.101 ± 0.001 MHz; and dJ = ?0.39 ± 0.06 kHz, dJK = 1.86 ± 0.27 kHz, dK = 0.70 ± 0.1 kHz, dEJ = (0.3 ± 0.03) × 10?6 and dEK = (?1.5 ± 0.2) × 10?6. The electric dipole moment has been found to be 0.98 ± 0.08 D and the values of the quadrupole coupling constants are xaa = 1.94 ± 0.22 MHz, xbb = ?4.08 ± 0.06 MHz and xcc = 2.14 ± 0.22 MHz. A simple analysis based on Townes and Dailey theory points to a considerable increase in the π-electron density and excess charge on the nitrogen site.  相似文献   

4.
The experimental FTIR spectra and DSC curves of the ternary 40TeO2–(60?x)V2O5–xNiO glasses with 0 ≤ x ≤ 30 (in mol%) have been investigated. The glass transition properties that have been measured and reported in this paper, include the glass transition temperature (T g), glass transition width (ΔT g), heat capacity change at glass transition (ΔC P) and Fragility (F). Thermal stability, fragility, and glass-forming tendency of these glasses have been estimated. Also, Poisson’s ratio (μ) and IR spectra of the presented systems have been investigated, to determine relationship between chemical composition and the thermal stability or to interpret the structure of glass. In addition, Makishima and Makenzie’s theory was applied for determination of Young’s modulus, bulk modulus, and shear modulus, indicating a strong relation between elastic properties and structure of glass. In general, results of this work show that glasses with x = 0 and 30 have the highest shear and young’s modulus which make them as suitable candidate for the manufacture of strong glass fibers in technological applications; but it should be mentioned that glass with x = 30 has higher handling temperature and super resistance against thermal shock.  相似文献   

5.
The modification techniques of applying carbon coating on particle surface and doping vanadium at Fe site were applied to make the LiFePO4 cathode materials achieve high rate performance in lithium ion batteries. To design and synthesize these LiFe(1?x)V x PO4/C (x?=?0, 0.02, 0.05, or 0.08) composites, an aqueous solution–evaporation method was taken, in which every kind of raw material was distributed at a high degree of uniformity. The LiFe0.95V0.05PO4/2.57 wt% C composite displayed the best electrochemical performances. At rates of 0.1, 0.5, 2, 5, and 10 C (1 C?=?170 mAg?1), it delivered a discharge capacity of 157.8, 156.9, 149, 139.6, and 130.1 mAh g?1, respectively. The composite exhibited perfect cycle stabilities as well, maintaining 100 % (0.5 C), 99.7 % (2 C), 98.9 % (5 C), and 96.6 % (10 C) of the first discharge capacity after 100 cycles at different rates, respectively.  相似文献   

6.
The standard Gibbs energy of formation of chromium tellurate, Cr2TeO6 was determined from the vapour pressure measurement of TeO2(g) over the phase mixture Cr2TeO6(s) + Cr2O3(s) in the temperature range 1,183–1,293 K. A thermogravimetry (TG)-based transpiration technique was used for the vapour pressure measurement. This technique was validated by measuring the vapour pressure of CdCl2(g) over CdCl2(s). The temperature dependence of the vapour pressure of CdCl2(g) could be represented as logp (Pa) (±0.02) = 12.06 ? 8616.3/T (K) (734 ? 823 K). A ‘third-law’ analysis of the vapour pressure data yielded a mean value of 185.1 ± 0.4 kJ mol?1 for the enthalpy of sublimation of CdCl2(s). The temperature dependence of vapour pressure of TeO2(g) generated by the incongruent vapourisation reaction, $ {\text{Cr}}_{ 2} {\text{TeO}}_{ 6} (\rm s) \to {\text{Cr}}_{ 2} {\text{O}}_{ 3} (\rm s) + {\text{TeO}}_{ 2} (\rm g) + 1/2\,{\text{O}}_{ 2} (\rm g) $ could be represented as logp (Pa) (±0.04) = 18.57 – 21,199/T (K) (1,183 – 1,293 K). The temperature dependence of the Gibbs energy of formation of Cr2TeO6 could be expressed as $ \{ \Updelta G_{\text{f}}^{ \circ } ({\text{Cr}}_{ 2} {\text{TeO}}_{ 6} ,{\text{ s}}){\text{ (kJ}}\,{\text{mol}}^{ - 1} )\pm 4. 0 {\text{\} = }} - 1 6 2 5. 6 { \,+\, 0} . 5 3 3 6\,T({\text{K}}) \, (1{,}183 - 1{,}293\,{\text{K}}). $ A drop calorimeter was used for measuring the enthalpy increments of Cr2TeO6 in the temperature range 373–973 K. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of Cr2TeO6 were derived from the experimentally measured enthalpy increment values. $ \Updelta H_{{{\text{f}},298\,{\text{K}}}}^{ \circ } ({\text{Cr}}_{ 2} {\text{TeO}}_{ 6} ) $ was found to be ?1636.9 ± 0.8 kJ mol?1.  相似文献   

7.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of Meserine ((?)-meptazinol phenylcarbamate), a novel potent inhibitor of acetylcholinesterase (AChE), was developed, validated, and applied to a pharmacokinetic study in mice brain. The lower limit of quantification (LLOQ) was 1 ng mL?1 and the linear range was 1–1,000 ng mL?1. The analyte was eluted on a Zorbax SB-Aq column (2.1?×?100 mm, 3.5 μm) with the mobile phase composed of methanol and water (70:30, v/v, aqueous phase contained 10 mM ammonium formate and 0.3 % formic acid) using isocratic elution, and monitored by positive electrospray ionization in multiple reaction monitoring (MRM) mode. The flow rate was 0.25 mL min?1. The injection volume was 5 μL and total run time was 4 min. The relative standard deviation (RSD) of intraday and interday variation was 2.49–7.81 and 3.01–7.67 %, respectively. All analytes were stable after 4 h at room temperature and 6 h in autosampler. The extraction recoveries of Meserine in brain homogenate were over 90 %. The main brain pharmacokinetic parameters obtained after intranasal administration were T max?=?0.05 h, C max?=?462.0?±?39.7 ng g?1, T 1/2?=?0.4 h, and AUC(0-∞)?=?283.1?±?9.1 ng h g?1. Moreover, Meserine was distributed rapidly and widely into brain, heart, liver, spleen, lung, and kidney tissue. The method is validated and could be applied to the pharmacokinetic and tissue distribution study of Meserine in mice.  相似文献   

8.
The molecular Zeeman effect is reported for 3-oxetanone and 3-methylene oxetane at fields near 20000 G. The results for 3-oxetanone are molecular g-values: gaa = ?0.1059 ± 0.0008, gbb = ?0.0581 ± 0.0004,gcc = ?0.0437 ± 0.0004, magnetic susceptibility anisotropies:2xaa -xbb - xcc = (9.6±0.5) x 10?6 erg/G2mole, 2xbb - xaa - xcc = ?(7.8±0.6) x 10?6 erg/G2mole, and molecular quadrupole moments: Qaa = ?(12.8±0.8) x 10?26 esu cm,Qbb = (7.9±0.8) x 10?26 esu cm, and Qcc = (4.9±0.8) x 10?26 esu cm. For 3-methylene oxetane, the results are gaa = ?0.0510 ± 0.0018, gbb = ?0.0435 ± 0.0010, gcc = ?0.0313 ± 0.0010, 2xaa - xbb - xcc = ?(10.9±0.5) x 10?6 erg/G2 mole, 2xbb - xaa - xcc = (2.3±0.9) x 10?6 erg/G2 mole, Qaa = -?5.4±1.0) x 10?26 esu cm, Qbb = (5.1 ± 1.2) x 10?26 esu cm, and Qcc = (0.2±1.5) x 10?26 esu cm. The bulk magnetic susceptibility for 3-oxetanone was measured to be x = 1/2 (xaa+xbb+xcc) = ?(30.6±1.5) x 10?6 erg/G2 mole. The out-of-plane minus average in-plane magnetic-susceptibility anisotropies in four-membered rings show larger paramagnetism than predicted on the basis of localized group susceptibility anisotropies. This effect is discussed and a possible explanation presented.  相似文献   

9.
Electrical conductivity and percentage linear thermal expansion of the borosilicate glass (BSG) and simulated waste-loaded borosilicate glass (BSGW) were measured in the temperature range of 300–780 K and compared. Pronounced increase in electrical conductivity was observed around glass transition temperature (T g) of BSG and BSGW. The activation energy (E a) of electrical conduction determined from the measured data for BSG and BSGW is 0.961 ± 0.005 and 0.960 ± 0.005 eV, respectively. The % average linear thermal expansion of BSGW showed a slight decreasing trend compared with pristine BSG. The average coefficient of thermal expansion determined from dilatometry data is 12.87 ± 0.24 × 10?6 and 11.94 ± 0.23 × 10?6 K?1 for BSG and BSGW, respectively. The T g measured by dilatometry is 806 ± 24 K for BSG and 790 ± 23 K for BSGW, respectively. The T g measured by DTA was found to be 820 ± 7 and 805 ± 5 K for BSG and BSGW, respectively, for heating cycle. The T g values obtained from DSC measurements are 805 ± 5 and 803 ± 5 K for BSG and BSGW, respectively. The T g of BSGW showed a slight decrease compared with that of BSG. The values obtained by DSC examination also showed the lowering of T g values for the waste-loaded composition. The lowering of T g may be attributed to the interaction of glass-forming agents and simulated waste elements.  相似文献   

10.
0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) and (0.94 ? x)Na0.5Bi0.5TiO3–0.06BaTiO3xBiFeO3 (NBT–6BT–xBFO, x = 0.03, 0.05 and 0.08) thin films were deposited on Pt/Ti/SiO2/Si substrates by a sol–gel process. Relative permittivity and remnant polarization were maximized at 5 % BFO substitution. Compared with 0.94NBT–0.06BT, the leakage current density of 0.89NBT–0.06BT–0.05BFO at 600 kV/cm is reduced by one order of magnitude. Enhanced ferroelectricity was also achieved in 0.89NBT–0.06BT–0.05BFO, the remnant polarization (2P r) values of 0.89NBT–0.06BT–0.05BFO and 0.94NBT–0.06BT are 46 and 24 µC/cm2.  相似文献   

11.
A relationship between local structure, thermal stability and electrical conductivity (σ) of xR2O·10Fe2O3·(90 ? x)V2O5 glasses (abbreviated as xRFV glasses, where R = Li, Na, K; x = 20 and 40 in mol %) was investigated by 57Fe-Mössbauer spectroscopy, X-ray diffractometry, differential thermal analysis (DTA) and DC two- and four-probe method. From DTA study, thermal stability of 20RFV glasses is lower than that of 40RFV glasses by evaluating Hruby parameter (K gl). Constant activation energy for crystallization (E a) of 2.5 eV obtained from both 20RFV and 40RFV glasses indicate that the crystallization proceeds with the cleavage of Fe–O bond having the energy of 2.6 eV. Isochronally annealed 20RFV glass at 400–450 °C resulted in the increase in electrical conductivity (σ) from the order of 10?3 to 10?1 S cm?1, whereas slight decrease in σ was observed for 20RFV glass annealed above 460 °C. A paramagnetic doublet with an identical isomer shift (δ) of 0.39 mm s?1 was observed in the 57Fe-Mössbauer spectra of 20RFV glass after isothermal annealing conducted at 400–450 °C for 100 min, which caused a decrease of quadruple splitting (Δ) from 0.67 to 0.52 mm s?1 for 20LiFV glass and from 0.66 to 0.53 mm s?1 for 20NaFV glass. On the other hand, three paramagnetic doublets with δ and Δ of 0.40 and 0.25, 0.38 and 0.60, and 0.31 and 1.11 mm s?1 respectively were observed for 20RFV glass annealed at 460–550 °C, reflecting precipitation of semiconducting FeVO4 phase having σ of 6.0 × 10?7 S cm?1. It can be concluded that isochronal annealing of 20RFV glass below 450 °C resulted in increase in σ due to the structural relaxation, while annealing above 500 °C resulted in the decrease of σ due to the precipitation of FeVO4 phase.  相似文献   

12.
The crystal growth kinetics of germanium disulfide in undercooled melts has been studied by optical microscopy under isothermal conditions. The linear growth kinetics of GeS2 has been observed in the temperature range 672 ≤ T ≤ 711 K in thin film samples. The activation energy of crystal growth assuming Arrhenius behavior has been determined as E G = 166 ± 8 kJ mol?1 for thin film samples. From the dependence of reduced growth rate on undercooling, the interface driven 2-D surface nucleated model was estimated.  相似文献   

13.
Heat capacity $ C_{\text{p}}^{^\circ } $ (T) of crystalline magnesium zirconium phosphate was measured between 6 and 815 K. The experimental data obtained were used to calculate the standard thermodynamic functions $ C_{\text{p}}^{^\circ } $ (T), H°(T) ? H°(0), S°(T), G°(T) ? H°(0) over the temperature ranging from T  0 to 810 K and standard entropy of formation at 298.15 K. The fractal dimension of Mg0.5Zr2(PO4)3 was calculated from experimental data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity, and the topology of the phosphate’s structure was estimated. Thermodynamic properties of structurally related phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) were compared.  相似文献   

14.
Chalcogenide glasses of (As50Se50)100?xAgx (0 ≤ x ≤ 25) were prepared using the melt quenching technique under non-isothermal conditions. Differential scanning calorimetry curves measured at different heating rates (5 ≤ β ≤ 40 K min?1) are used to characterize the as-quenched samples. The thermal stability was monitored through the calculation of the temperature difference T c ? T g, stability parameter S and crystallization rate factor K p. The glass-forming ability (GFA) was investigated on the basis of Hurby parameter H r which is a strong indicator of GFA. In addition, the activation energy of glass transition E t, activation energy of crystallization E c and Avrami exponent n of the studied compositions were determined. The mechanism of crystallization was found to be a combination of two- and three-dimensional crystal growth.  相似文献   

15.
The cure behavior of diglycidyl ether of bisphenol A with a simple ether amine (4,7,10, trioxa -1,13, tridecane diamine), system I and a polyether amine (polypropylene glycol block polyethylene glycol block polypropylene glycol bis 2 amino propyl ether), system II was compared by Differential Scanning Calorimetry. The exothermicity of the curing reaction of system I is higher than that of system II (316 ± 15 J g?1 for System I and 230 ± 15 J g?1 for system II). Kinetic parameters viz., activation energy, pre-exponential factor, and rate constant for curing were evaluated by Kissinger method and Kissinger–Akahira–Sunose isoconversion method. Both systems showed low glass transition temperatures and System II shows a much lower T g (?38 °C) than system I (26 °C). The thermogravimetric analysis of the two cured epoxy amine systems showed comparable thermal stability.  相似文献   

16.
A new V6O13-based material has been synthesized via the sol–gel route. This sol–gel mixed oxide has been obtained from an appropriate heat treatment of the chromium-exchanged V2O5 xerogel performed under reducing atmosphere. This new compound, with the chemical formula Cr0.36V6O13.50, exhibits a monoclinic structure (C2/m) with the following unit cell parameters, a=11.89 Å, b=3.68 Å, c=10.14 Å, β=101.18°. The electrochemical characterization of this compound has been performed using galvanostatic discharge–charge experiments in the potential range 4–1.5 V and completed by ac impedance spectroscopy measurements. It exhibits a specific capacity of about 370 mAh g?1, which makes the compound Cr0.36V6O13.50 the best one in the V6O13-based system: 85% of the initial capacity (315 mAh g?1) after the 35th cycle is still available at C/25 without any polarization. From impedance spectroscopy, a high kinetics of Li transport (D Li=1.8×10?9 cm2 s?1) is found at mid-discharge.  相似文献   

17.
Novel complex oxides Sr2Ga1+x In1?x O5, x?=?0.0–0.2 with brownmillerite-type structure were prepared in air at T?=?1,273 K, 24 h. Study of the crystal structure of Sr2Ga1.1In0.9O5 refined using X-ray powder diffraction data (S.G. Icmm, a?=?5.9694(1) Å, b?=?15.2091(3) Å, c?=?5.7122(1) Å, χ 2?=?2.48, R F 2? =?0.0504, R p?=?0.0458) revealed ordering of Ga3+ and In3+ cations over tetrahedral and octahedral positions, respectively. A partial replacement of Sr2+ by La3+ according to formula Sr1?y La y Ga0.5In0.5O2.5+y/2, leads to the formation of a cubic perovskite (a?=?4.0291(5) Å) for y?=?0.3. No ordering of oxygen vacancies or cations was observed in Sr0.7La0.3Ga0.5In0.5O2.65 as revealed by electron diffraction study. The trace diffusion coefficient (D T) of oxygen for cubic perovskite Sr0.7La0.3Ga0.5In0.5O2.65 is in the range 2.0?×?10?9–6.3?×?10?8 cm2/s with activation energy 1.4(1)?eV as determined by isotopic exchange depth profile technique using secondary ion mass spectrometry at 973–1,223 K. These values are close to those reported for Ca-doped ZrO2. High-temperature electrical conductivity of Sr0.7La0.3Ga0.5In0.5O2.65 studied by AC impedance was found to be nearly independent on oxygen partial pressure. Calculated values of activation energy at T?<?1,073 K for hole and oxide-ion conductivities are 0.96 and 1.10 eV, respectively.  相似文献   

18.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

19.
The Co-free Li1.20Mn0.54Ni x Fe y O2 (x/y?=?0.5, 1.0, 2.0) materials were synthesized by combustion method. The effects of the preparation condition on the structure, morphology, and electrochemical performance were investigated by X-ray diffractometry, scanning electron microscopy, charge–discharge tests, and cyclic voltammetry (CV). The results indicate that the structure and electrochemical characteristics are sensitive to the preparation condition when a large amount of Fe is included. A pure layered α-NaFeO2 structure with R-3m space group and the discharge capacities of over 200 mAh g?1 were observed in some as-prepared cathode materials. Particularly, the Li1.2Mn0.54Ni0.13Fe0.13O2 prepared by mixing an excess amount of lithium and by firing at 600 °C exhibits a second discharge capacity of 264 mAh g?1 in the voltage range of 1.5–4.8 V under current density of 30 mA g?1 at 30 °C and discharge capacity of 223 mAh g?1 at 2.0–4.8 V. Nevertheless, an unpleasant capacity fading was observed and is primarily ascribed to transformation from a rock-layered structure into a spinel one according to CV testing.  相似文献   

20.
The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from ?155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from ?120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol?1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min?1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min?1) was detected, with ΔC p = 0.21 ± 0.01 J g?1 °C?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号