首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of the ab initio FLAPW-GGA computations of the band structure of the recently synthesized layered tetragonal (space group I4/mmm) arsenide (Sr3Sc2O5)Fe2As2 as a possible basis phase of a new group of FeAs superconductors are presented. For (Sr3Sc2O5)Fe2As2, the energy bands, electron state density distributions, Fermi surface topology, low-temperature electron specific heat, molar Pauli paramagnetic susceptibility, and effective atomic charges have been determined. These results are discussed compared to similar data for the layered tetragonal crystals LaFeAsO, SrFeAsF, SrFe2As2, and LiFeAs that are the basis phases of the recently discovered high-temperature (T C ~ 26–56 K) 《1111》, 《122》, and 《111》 FeAs superconductors.  相似文献   

2.
We have performed ab initio LDA calculations of the electronic structure of newly discovered prototype high-temperature superconductors AFe2As2 (A = Ba, Sr) and compared it with the previously calculated electronic spectra of ReOFeAs (Re = La, Ce, Pr, Nd, Sm). In all cases, we obtain almost identical densities of states in a rather wide energy interval (up to 1 eV) around the Fermi level. Energy dispersions are also very similar and almost two dimensional in this energy interval, leading to the same basic (minimal) model of the electronic spectra, determined mainly by Fe d orbitals of the FeAs layers. The other constituents, such as A ions or rare-earth Re (or oxygen states) are more or less irrelevant for superconductivity. LDA Fermi surfaces for AFe2As2 are also very similar to that of ReOFeAs. This makes the more simple AFe2As2 a generic system to study the high-temperature superconductivity in FeAs-layered compounds. The text was submitted by the authors in English.  相似文献   

3.
Superconductivity was achieved in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The X-ray diffraction measurement shows that this material has a layered structure with the space group of P4/nmm, and with the lattice constants a = b = 3.9003 Å and c = 15.8376 Å. Clear diamagnetic signals in ac susceptibility data and zero-resistance in resistivity data were detected at about 6 K, confirming the occurrence of bulk superconductivity. Meanwhile we observed a superconducting transition in the resistive data with the onset transition temperature at 29.2 K, which may be induced by the nonuniform distribution of the Cr/Ti content in the FeAs-42622 phase.  相似文献   

4.
Based on first-principle FLAPW-GGA calculations, we have investigated structural and electronic properties of the recently synthesized tetragonal (space group P4/nmm) nickel-based pnictide oxide superconductors: 3.3 K (Ni2P2)(Sr4Sc2O6) and 2.7 K (Ni2As2)(Sr4Sc2O6). Optimized structural data, electronic bands, total and partial densities of states, and Fermi surface topology have been obtained and discussed in comparison with available experiments and with their Fe-based (Fe2P2)(Sr4Sc2O6) and (Fe2As2)(Sr4Sc2O6) analogs.  相似文献   

5.
This paper reports on the results of the ab initio FLAPW-GGA band structure calculations for two new layered phases SrRu2As2 and BaRu2As2, which are isostructural and isoelectronic to the known tetragonal (Ca,Sr,Ba)Fe2As2 basis phases of the FeAs superconductor family. The energy bands, densities of states, topology of the Fermi surface, low-temperature electron specific heats, and molar Pauli paramagnetic susceptibilities of SrRu2As2 and BaRu2As2 are determined for the first time and discussed in comparison with those for BaFe2As2 and BaRh2As2.  相似文献   

6.
We present LDA band structure of novel hole doped high temperature superconductors (T c ∼ 30 K) K x Fe2Se2 and Cs x Fe2Se2 and compare it with previously studied electronic structure of isostructural FeAs superconductor BaFe2As2 (Ba122). We show that stoichiometric KFe2Se2 and CsFe2Se2 have rather different Fermi surfaces as compared with Ba122. However at about 60% of hole doping Fermi surfaces of novel materials closely resemble those of Ba122. In between these dopings we observe a number of topological Fermi surface transitions near the Γ point in the Brillouin zone. Superconducting transition temperature T c of new systems is apparently governed by the value of the total density of states (DOS) at the Fermi level.  相似文献   

7.
The electronic structure of the recently discovered superconductor SrPt2As2 with T c = 5.2 K has been calculated in the local-density approximation. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. The crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three-dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.  相似文献   

8.
The results of ab initio FLAPW-GGA computations of the band structure of two new layered low-temperature superconductors BaRh2P2 and BaIr2P2 (with a ThCr2Si2 tetragonal structure) are presented. As distinct from the family of the isostructural FeAs superconductors, they feature the complete replacement of the magnetic (Fe) metal by the nonmagnetic 4d (Rh) and 5d (Ir) metals. For BaRh2P2 and BaIr2P2, the energy bands, the distributions of the densities of electronic states, the Fermi surface topology, and the coefficients of the low-temperature electron specific heat and the molar Pauli paramagnetic susceptibility have been determined. An increase in T C in the BaRh2P2 (1 K) → BaIr2P2 (2.1 K) transition can assumingly be attributed to the features of their phonon subsystem.  相似文献   

9.
The electronic structure of Sr2CuMn2As2O2 and Sr2CuFe2As2O2 are studied by the first-principle calculations. These compounds have a body-centered-tetragonal crystal structure that consists of the CuO2 layers similar to those in the high-Tc cuprate superconductor, and intermetallic MAs (M = Mn, or Fe) layers similar to the FeAs layers in high-Tc pnictides. Such special structure makes them as interesting candidates for new type of superconductor since they have two types of superconducting layers. However, our calculations indicate that the states in the range from −2.0 eV to +2.0 eV are dominated by Mn-3d or Fe-3d states, while the states of Cu-3d are far away from the Fermi level (in the range from −3.0 eV to −1.0 eV). Such results are significantly different with the Cu-based superconductor, like La2CuO4, where the states around Fermi level are dominated by Cu-3d states. Besides, we find that the mean-field magnetic ground state is the checkerboard antiferromagnetic in Cu sublattice and the stripe antiferromagnetic in Fe (or Mn) sublattice.  相似文献   

10.
Systematic ab initio LDA calculations were performed for all the typical representatives of recently discovered class of iron-based high-temperature superconductors: REOFe(As,P) (RE = La, Ce, Nd, Sm, Tb), Ba2Fe2As, (Sr,Ca)FFeAs, Sr4Sc2O6Fe2P2, LiFeAs and Fe(Se,Te). Non-monotonic behavior of total density of states at the Fermi level is observed as a function of anion height relative to Fe layer with maximum at about Δz a ~ 1.37 Å, attributed to changing Fe-As (P, Se, Te) hybridization. This leads to a similar dependence of superconducting transition temperature T c as observed in the experiments. The fit of this dependence to elementary BCS theory produces semiquantitative agreement with experimental data for T c for the whole class of iron-based superconductors. The similar fit to Allen-Dynes formula underestimates T c in the vicinity of the maximum, signifying the possible importance of non-phonon pairing in this region. These results unambiguously demonstrate that the main effect of T c variation between different types of iron-based superconductors is due to the corresponding variation of the density of states at the Fermi level.  相似文献   

11.
Single-phase polycrystalline La0.75Sr0.25Co0.9857Fe0.02O3 samples have been prepared by solidstate ceramic technology. The samples have the rhombohedral structure (space group \(R\bar 3c\)). The studies of perovskite La0.75Sr0.25Co0.9857Fe0.02O3 by Mössbauer spectroscopy on impurity 57Fe nuclei in the temperature range of 5–293 K have revealed the existence of a superparamagnetic relaxation in the temperature range of 100–210 K. The parameters of hyperfine interactions (hyperfine magnetic fields, line shifts, and quadrupole shifts) and the anisotropy energy have been measured, and the frequencies of magnetic moment relaxation of iron ions have been estimated.  相似文献   

12.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

13.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

14.
Magnetite polycrystalline films are grown by variously oxidizing a Fe film on the Si(111) surface covered by a thin (1.5 nm) SiO2 layer. It is found that defects in the SiO2 layer influence silicidation under heating of the Fe film. The high-temperature oxidation of the Fe film results in the formation of both Fe3O4 and iron monosilicide. However, the high-temperature deposition of Fe in an oxygen atmosphere leads to the growth of a compositionally uniform Fe3O4 film on the SiO2 surface. It is found that such a synthesis method causes [311] texture to arise in the magnetite film, with the texture axis normal to the surface. The influence of the synthesis method on the magnetic properties of grown Fe3O4 films is studied. A high coercive force of Fe3O3 films grown by Fe film oxidation is related to their specific morphology and compositional nonuniformity.  相似文献   

15.
Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-T c superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, H c2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, ρ(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and in Ba0.68K0.32Fe2As2 in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the Γ point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H | c) and in-plane (H | ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for 122 underdoped FeAs compounds, we find that H c2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, γ = H c2 ab /H c2 c , is about 2.2 at T c . For both field orientations we find a concave curvature of the H c2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism, we perfectly can describe H c2 and its anisotropy.  相似文献   

16.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is anti-ferromagnetic with T Nexp ∼ 250 K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered “plaquettes” or “zigzags”), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show τ1 (plaquettes) spin configuration to be more favorable than τ2 (zigzags).  相似文献   

17.
The classical solid-phase reaction between Fe2O3 and Al layers in thin films is initiated. It is shown that, in the reaction products, Fe granulated films are formed in the Al2O3 nonconducting matrix. Analysis of the reaction equation demonstrates that the volume fraction of iron in the granulated films is less than the percolation threshold. This determines the magnetic properties of iron clusters in a superparamagnetic state. It is assumed that the nanocrystalline microstructure exists in thin films after solid-phase reactions proceeding under conditions of self-propagating high-temperature synthesis.  相似文献   

18.
First-principles calculations of Na2Ti3O7 have been carried out with density-functional theory (DFT) and ultrasoft pseudopotentials. The electronic structure and bonding properties in layered Na2Ti3O7 have been studied through calculating band structure, density of states, electron density, electron density difference and Mulliken bond populations. The calculated results reveal that Na2Ti3O7 is a semiconductor with an indirect gap and exhibits both ionic and covalent characters. The stability of the (Ti3O7)2− layers is attributed to the covalent bonding of strong interactions between O 2p and Ti 3d orbitals. Furthermore, the O atoms located in the innerlayers interact more strongly with the neighboring Ti atoms than those in the interlayer regions. The ion-exchange property is due to the ionic bonding between the Na+ and (Ti3O7)2− layers, which can stabilize the interlayers of layered Na2Ti3O7 structure.  相似文献   

19.
We have studied the effect of cationic disorder on the spin polarization of the double perovskite system Sr2Fe1+x Mo1−x O6 with  −1 ≤ x ≤ 1/3. The composition x = 0 corresponds to the well-known double-perovskite Sr2FeMoO6, which is expected to have complete spin polarization, however all samples present some degree of Fe/Mo disorder which reduces the tunneling magnetoresistance in granular samples. We consider an electronic model within the renormalized perturbation expansion Green’s functions, consisting in a correlated electron picture with localized Fe-ions and itinerant electrons interacting with the local spins via a double-exchange type mechanism. Our results show the influence of disorder on the density of states and the ground-state properties, particularly on the spin polarization over the whole range of x.  相似文献   

20.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号