首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water vapor adsorption for various activated carbons with narrow and wide micropore volume distributions and mesopore surface areas between 40 and 300 m2/g have been investigated. For all the isotherms the point of inflection was determined, which can be taken as the point characterizing the formation of a water adsorption layer on the pore wall surface of carbon adsorbents. To do this the adsorption and desorption branches of the isotherms were approximated according to Weibull's distribution. A good correlation was obtained between values for the water monolayer capacity, calculated from the porous structure parameters of the carbons, and the adsorption values corresponding to the isotherm inflection pointsa inf. For the group of carbons studied the values of relative pressure at the inflection point of the isotherms fell within the range 0.5–0.72.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 31–34, January, 1991.  相似文献   

2.
The performance of various activated carbons obtained from different carbon precursors (i.e., plastic waste, coal, and wood) as adsorbents for the desulfurization of liquid hydrocarbon fuels was evaluated. To increase surface heterogeneity, the carbon surface was modified by oxidation with ammonium persulfate. The results showed the importance of activated carbon pore sizes and surface chemistry for the adsorption of dibenzothiophene (DBT) from liquid phase. Adsorption of DBT on activated carbons is governed by two types of contributions: physical and chemical interactions. The former include dispersive interactions in the microporous network of the carbons. While the volume of micropores governs the amount physisorbed, mesopores control the kinetics of the process. On the other hand, introduction of surface functional groups enhances the performance of the activated carbons as a result of specific interactions between the acidic centers of the carbon and the basic structure of DBT molecule as well as sulfur-sulfur interactions.  相似文献   

3.
Coal origin and wood origin activated carbons were used in this study. To broaden the spectrum of surface features, the surface of the initial samples was modified using oxidation with nitric acid or impregnation with urea followed by heat treatment. Boehm and potentiometric titrations, thermal analysis, and sorption of nitrogen were used to characterize the pore structure and surface chemistry. Then adsorption of ethylmethylamine from aqueous solutions was carried out without controlling the pH of the carbon suspension. The isotherms were measured at 299 K and fitted to the Freundlich equation. The results showed that the amount of ethylmethylamine adsorbed on all carbons at a high concentration is dependent on the total number of surface groups whereas at low concentration it depends on the type of surface groups. The latter was observed exclusively for initial and oxidized carbons where acidic groups are present. The ethylmethylamine adsorption is mainly governed by dipole-dipole, hydrogen bonding, or specific acid-base interactions. Those interactions play a crucial role in incorporation of nitrogen to the carbon matrix at elevated temperatures.  相似文献   

4.
用X-射线光电子能谱对3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维 (SACF) 的表面化学结构进行了表征,并研究和对比了它们的吸附性能,包括对碘、苯酚和亚甲基蓝的液相吸附性能,对有机蒸汽的吸附性能以及对Au3+的还原吸附性能等。结果表明,3个样品表面均含有多种含氧官能团,吸附能力SACF>SSAC> CAC4。样品的吸附性能主要取决于自身孔结构,与其表面化学结构也有密切的关系。  相似文献   

5.
Adsorption of benzene and water vapors on activated carbons of various microporous structure was studied. The values of the characteristic energy of adsorption of benzene and water vapors were compared and the affinity coefficients βH2O for carbons with various degrees of activation were calculated. The values of the βH2O coefficient for carbons with the same degrees of oxidation remain constant. This makes it possible to use the experimental data on benzene adsorption for prediction of the behavior of microporous activated carbons towards adsorption of water vapor. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2636–2639, December, 2005.  相似文献   

6.
Summary The adsorption isotherms of water vapor on modified activated carbons are measured in order to study the role of various surface groups in the primary adsorption of water molecules on these adsorbents. These adsorption isotherms are analysed by means of the Dubinin-Serpinsky and Jovanovic equations, which take into account the special features of water vapor adsorption on microporous activated carbons. Numerical analysis of the measured adsorption isotherms by means of the above mentioned equations showed their limited applicability for interpreting adsorption mechanism of water molecules on activated carbons.
Adsorption von Wasserdampf auf modifizierter Aktivkohle
Zusammenfassung Die Adsorptionsisothermen von Wasserdampf auf modifizierter Aktivkohle wurden gemessen, um die Rolle verschiedener Oberflächentypen auf die Primäradsorption von Wassermolekülen auf diesen Adsorbenzien zu untersuchen. Die Adsorptionsisothermen wurden mittels der Dubinin-Serpinsky- und Jovanovic-Gleichungen analysiert, welche die speziellen Eigenheiten von Wasser auf mikroporöser Aktivkohle berücksichtigen. Die numerische Analyse der gemessenen Adsorptionsisothermen mittles der genannten Gleichungen zeigte ihre limitierte Anwendbarkeit zur Interpretation von Adsorptionsmechanismen von Wassermolekülen auf modifizierter Aktivkohle.
  相似文献   

7.
Dihydrogen adsorption at 77 K on a number of fine-particle carbon materials, activated carbons, and carbon nanotubes has been investigated. The micropore structure parameters of these materials have been determined using a volumetric comparative method and nonlocal density functional theory (NLDFT). These data processing methods lead to different values of textural parameters. This difference is attributed to the presence of specific sorption sites on the surface of real carbon materials. The pore size range in which the NLDFT method is applicable to the C-H2 system has been determined. A comparison between the hydrogen sorption properties of different carbon nanotubes is presented.  相似文献   

8.
Carbonaceous adsorbents with controllable surface area were chemically activated with KOH at 780 degrees C from chars that were carbonized from corncobs at 450 degrees C. The pore properties, including BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons, were characterized by the t-plot method based on N(2) adsorption isotherms. Two groups are classified according to the types of adsorption/desorption isotherms. Group I corncob-derived activated carbons, with KOH/char ratios from 0.5 to 2, exhibited BET surface area ranging from 841 to 1221 m(2)/g. Group II corncob-derived activated carbons, with KOH/char rations from 3 to 6, showed high BET surface areas, from 1976 to 2595 m(2)/g. From scanning electron microscopic (SEM) results, the surface morphology of honeycombed holes on corncob-derived activated carbons was significantly influenced by the KOH/char ratios. The adsorption kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water at 30 degrees C were studied on the two groups of activated carbons, which were suitably described by two simplified kinetic models, pseudo-first-order and pseudo-second-order equations. The effective particle diffusivities of phenols and dyes at the corncob-derived activated carbons of group II are higher than those of ordinary activated carbons. The high-surface-area activated carbons were demonstrated to be promising adsorbents for pollution control and for other applications.  相似文献   

9.
The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption.  相似文献   

10.
Active carbons(ACs) were prepared through chemical activation of biochar from whole corn stalk(WCS)and corn stalk pith(CSP) at varying temperatures using potassium hydroxide as the activating agent. ACs were characterized via pore structural analysis and scanning electron microscopy(SEM). These adsorbents were then assessed for their adsorption capacity for butanol vapor. It was found that WCS activated at900 °C for 1 h(WCS-900) had optimal butanol adsorption characteristics. The BET surface area and total pore volume of the WCS-900 were 2330 m2/g and 1.29 cm3/g, respectively. The dynamic adsorption capacity of butanol vapor was 410.0 mg/g, a 185.1% increase compared to charcoal-based commercial AC(143.8 mg/g).  相似文献   

11.
Effects of hydrochloric acid and sodium hydroxide treatments of activated carbons (ACs) on chromium(VI) reduction were studied. The surface properties were determined by pH, acid-base values, FT-IR, and X-ray photoelectron spectrometer (XPS). And the porous structure of the activated carbons was characterized by adsorption of N(2)/77 K. The Cr(VI) adsorption experiments were carried out to analyze the influence of porous texture and surface properties changed by the chemical surface treatments of ACs on adsorption rate with carbon-solution contact time. From the experimental results, it was observed that the extent of adsorption and reduction processes depends on both microporous structure and functional groups. And the adsorption of Cr(VI) ion was more effective in the case of acidic treatment on activated carbons, resulting from the increases of acid value (or acidic functional group) of activated carbon surfaces. However, basic treatment on activated carbons was not significantly effective on the adsorption of Cr(VI) ion, probably due to the effects of the decrease of specific surface area and basic Cr(VI) in nature.  相似文献   

12.
The inhibition effect of nitrobenzene adsorption by water clusters formed at the acidic groups on activated carbon was examined in aqueous and n-hexane solution. The activated carbon was oxidized with nitric acid to introduce CO complexes and then outgassed in helium flow at 1273 K to remove them completely without changing the structural properties of the carbon as a reference adsorbent. The amounts of acidic functional groups were determined by applying Boehm titration. A relative humidity of 95% was used to adsorb water onto the carbon surface. Strong adsorption of water onto the oxidized carbon can be observed by thermogravimetric analysis. The adsorption kinetic rate was estimated to be controlled by diffusion from the kinetic analysis. Significant decline in both capacity and kinetic rate for nitrobenzene adsorption onto the oxidized carbon was also observed in n-hexane solution by preadsorption of water to the carbon surface, whereas it was not detected for the outgassed carbons. These results might reveal that water molecules forming clusters at the CO complexes inhibited the entrance of nitrobenzene into the interparticles of the carbon.  相似文献   

13.
The isotherms of vapor adsorption of isobutyl alcohol, benzene, sulfur dioxide, and nitrogen monoxide on activated carbons with varied structural parameters and oxidation degrees were studied. The advisability of performing special research into vapor and gas adsorption at low concentrations was demonstrated.  相似文献   

14.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

15.
In this work, fir woods and pistachio shells were used as source materials to prepare porous carbons, which were activated by physical (steam) and chemical (KOH) methods. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were first characterized by a t-plot method based on N(2) adsorption isotherms. Highly porous activated carbons with BET surface area up to 1009-1096 m(2)/g were obtained. The steam and KOH activation methods produced carbons with mesopore content in the range 9-15 and 33-49%, respectively. The adsorption equilibria and kinetics of tannic acid, methylene blue, 4-chlorophenol, and phenol from water on such carbons at 30 degrees C were then investigated to check their chemical characteristics. The Freundlich equation gave a better fit to all adsorption isotherms than the Langmuir equation. On the other hand, the intraparticle diffusion model could best follow all adsorption processes. In comparison with KOH-activated carbons, it was shown that the rate of external surface adsorption with steam-activated carbons was significantly higher but the rate of intraparticle diffusion was much lower.  相似文献   

16.
Applying activated carbons for SO2 adsorption and conversion to H2SO4, as a dry process, has been considered the development direction of desulfurization technology. Coal-based activated carbon, coconut shell activated carbon, single wall carbon nanotube and multi-wall carbon nanotubes were used as typical carbonaceous materials to study the SO2 adsorption mechanism. SEM, N2 adsorption, XPS and fixed-bed reaction system were employed to study the morphology, pore structure, surface functional groups and SO2 adsorption behaviors of the four adsorbents. The fixed-bed experiment was carried out at normal pressure and SO2 concentration was set 1,000 ppm. According to SEM and N2 adsorption results, hierarchical pore structure was an important characteristic of activated carbon. Aggregation was an important characteristic of CNTs. Mesopores and macropores took the dominance of pore structure in CNTs. According the SO2 adsorption data and correlation analysis, it can be concluded that the dominant adsorption type on activated carbons does not alter with adsorption temperature changing. However, the adsorption type of SO2 adsorption on CNTs changes with adsorption temperature varying. With adsorption temperature increasing, the dominant adsorption type transforms to chemisorption by physisorption. Higher-density π–π* in carbon nanotubes may be the active sites for the SO2 chemical adsorption. Micropores with the diameter smaller than 0.7 nm were the best SO2 adsorption place for both activated carbons and carbon nanotubes. The results provided a profound insight into the microstructure and SO2 adsorption mechanism of the two kinds of carbonaceous materials.  相似文献   

17.
The physico-chemical effects caused by supercritical CO2 (ScCO2) exposure is one of the leading problems for CO2 storage in deep coal seams as it will significantly alter the flow behaviors of gases. The main objective of this study was to investigate the effects of ScCO2 injection on diffusion and adsorption kinetics of CH4, CO2 and water vapor in various rank coals. The powdered coal samples were immersed in ScCO2 for 30 days using a high-pressure sealed reactor. Then, the diffusion and adsorption kinetics of CH4, CO2 and water vapor in the coals both before and after exposure were examined. Results indicate that the diffusivities of CH4 and CO2 are significantly increased due to the combined matrix swelling and solvent effect caused by ScCO2 exposure, which may induce secondary faults and remove some volatile matters that block the pore throats. On the other hand, the diffusivities of water vapor are reduced due to the elimination of surface functional groups with ScCO2 exposure. It is concluded that density of the surface function groups is the controlling factor for water vapor diffusion rather than the pore properties. The unipore model and pseudo-first-order equation can simulate the diffusion and adsorption kinetics of CH4 and CO2 very well, but the unipore model is not capable of well describing water vapor diffusion. The effective diffusivity (De), diffusion coefficient (D) and adsorption rates (k1) of CH4 and CO2 are significantly increased after ScCO2 exposure, while the values of water vapor are decreased notably. Thus, the injection of ScCO2 will efficiently improve the transport properties of CH4 and CO2 but hinder the movement of water molecules in coal seams.  相似文献   

18.
Modifications of texture and surface properties of a commercial activated carbon (Norit GF-40) were performed by several treatments in order to study their effects on the selective adsorption of nitromethane from nitromethane/water vapor mixtures. Characterisation of the samples by nitrogen adsorption and thermal analysis showed that HNO3 treatments produce important losses of porosity and surface area, accompanied of an increase of oxygenated functional groups on the surface of carbon, which are progressively removed by heating at temperatures between 573 and 1073 K. All this leads to a drastic decrease of the adsorption capacity per gram of adsorbent with respect to the raw carbon, which offers, on the other hand, the best adsorptive performance. Oxidation by H2O2 does not practically affect its textural properties and introduces an important amount of oxygen functional groups at the surface, but changes in the adsorptive properties of carbon are insignificant. Sample oxidised by H2O2 and subsequently treated by diethylentriamine shows a decrease in adsorption capacity, without any relevant loss of surface area. The raw carbon treated at high temperature that exhibits the highest surface area and where surface functional groups are absent, showed the greatest adsorption capacity for nitromethane, being much more selective for nitromethane than for water, in nitromethane-water mixtures. Adsorption capacity values for nitromethane on the different samples are related to the extent of the surface area, while water vapour adsorption seems to depend on the population of functional groups at the surface, which may work as adsorption sites.  相似文献   

19.
研究活性炭在硫化氢存在条件下催化氧化脱除煤气中单质汞的吸附机理和探讨提高其吸附能力的方法,在模拟煤气气氛下对3种活性炭和一种活性焦进行汞的吸附性能实验,并进一步分析活性炭(焦)的孔隙结构。用BET方程处理N2等温吸附数据,计算比表面积;用HK法进行微孔分析;用BJH法计算中孔孔径分布。结果表明,硫化氢被催化氧化后,生成吸附在活性炭孔壁上的活性硫促进了对汞的吸附;随着活性炭微孔和中孔体积的增大,活性炭对汞的吸附能力得到提高。  相似文献   

20.
Two commercial activated carbons with differences in their superficial chemistry, one granular and the other pelletised, were modified for use in phenol and 2,4-dinitrophenol adsorption. In this paper, changes to the activated carbon surface will be evaluated from their immersion calorimetry in water and benzene, and they will then be compared with Area BET, chemical parameters, micropore size distributions and hydrophobicity factors of the modified activated carbons. The activated carbons were modified using 60 % solutions of phosphoric acid (H3PO4), nitric acid (HNO3), zinc chloride (ZnCl2) and potassium hydroxide (KOH); the activated carbon/solution ratio was 1:3 and impregnation was conducted 291 K for a period of 72 h before samples were washed until a constant pH was obtained. Water immersion calorimetry showed that the best results were obtained from activated carbons modified with nitric acid, which increased from ?10.6 to ?29.8 J g?1 for modified granular activated carbon, and ?30.9 to ?129.3 J g?1 for pelletised activated carbon. Additionally, they showed the best results in phenol and 2.4-dititrophenol adsorption. Those results indicate that impregnation with nitric acid under the employed conditions could generate a greater presence of oxygenated groups on their surface, which favours hydrogen bond formation and the increased adsorption of polar compounds. It should also be noted that immersion enthalpy in benzene for modified activated carbon with nitric acid is the method with the lowest value, which is consistent with the increased presence of polar groups on its surface. Regarding hydrophobicity factors, it was observed that granular carbons modified with nitric acid and potassium hydroxide have the lowest ratios, indicating greater interaction with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号