首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
The reaction of [CpRu(CH3CN)3][PF6], [Cp*RuCl] n , and [CpFRuCl]n with 1,3-diformylindene results in the predominant formation of zwitter-ionic arene-cyclopentadienyl complexes {η6-1,3-(CHO)2C9H5}RuCp (Cp = C5H5), {η6-1,3-(CHO)2C9H5}RuCp* (Cp* = C5Me5), and {η6-1,3-(CHO)2C9H5}RuCpF (CpF = C5Me4CF3), respectively. The ruthenocenes {η5-1,3-(CHO)2C9H5}RuCp, {η5-1,3-(CHO)2C9H5}RuCp*, and {η5-1,3-(CHO)2C9H5}RuCpF were synthesized by the reaction of 1,3-diformylindenyl potassium with [CpRu(CH3CN)3][PF6], [Cp*RuCl] n , and [CpFRuCl] n .  相似文献   

2.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

3.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

4.
Reactions of the ruthenium complexes [RuH(CO)Cl(PPh3)3] and [RuCl2(PPh3)3] with hetero-difunctional S,N-donor ligands 2-mercapto-5-methyl-1,3,5-thiadiazole (HL1), 2-mercapto-4-methyl-5-thiazoleacetic acid (HL2), and 2-mercaptobenzothiazole (HL3) have been investigated. Neutral complexes [RuCl(CO)(PPh3)2(HL1)] (1), [RuCl(CO)(PPh3)2(HL2)] (2), [RuCl(CO)(PPh3)2(HL3)] (3), [Ru(PPh3)2(HL1)2] (4), [RuCl(PPh3)3(HL2)] (5), and [RuCl(PPh3)3(HL3)] (6) imparting κ2-S,N-bonded ligands have been isolated from these reactions. Complexes 1 and 4 reacted with diphenyl-2-pyridylphosphine (PPh2Py) to give neutral κ1-P bonded complexes [RuCl(CO)(κ1-P-PPh2Py)2(HL1)] (7), and [Ru(κ1-P-PPh2Py)2(HL1)2] (8). Complexes 1-8 have been characterized by analytical, spectral (IR, NMR, and electronic absorption) and electrochemical studies. Molecular structures of 1, 2, 4, and 7 have been determined crystallographically. Crystal structure determination revealed coordination of the mercapto-thiadiazole ligands (HL1-HL3) to ruthenium as κ2-N,S-thiolates and presence of rare intermolecular S-S weak bonding interaction in complex 1.  相似文献   

5.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

6.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

7.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

8.
Summary [RuCl(NO)2(dppbp)]BF4 (dppbp=(Ph2PCH2)2–) has been synthesised from [RuCl(NO)2(PPh3)2]BF4 and dppbp and characterised in the solid state by a single crystal x-ray determination. The [RuCl(NO)2(dppbp)]+ cation, has an approximately square-pyramidal co-ordination geometry with the dppbp ligand occupyingtrans-basal sites. The nitrosyl ligand in the apical site is partially bent [Ru–N–O=156.2(7)0] and the nitrosyl ligand in the basal side is essentially linear [Ru–N–O=172.5(6)0]. The1Hn.m.r. spectrum of [RuCl(NO)2(dppbp)]BF4 in solution has provided some insight into the dynamics of the complex in solution.  相似文献   

9.
The crystal structures of N-o-hydroxybenzimido-meso-tetraphenylporphyrinatozinc(II) toluene solvate [Zn(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 4·C6H5CH3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatonickel(II) chloroform solvate [Ni(N-NCO(o-OH)C6H4-tpp)·0.6CHCl3; 5·0.6 CHCl3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatocopper(II) toluene solvate [Cu(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 6·C6H5CH3] and N-o-oxido-benzimido-meso-tetraphenylporphyrinato(-κ4,N1,N2,N3,N5,κO2) manganese (III) methylene chloride·methanol solvate [Mn(N-NCO(o-O)C6H4-tpp)·CH2Cl2·MeOH; 8·CH2Cl2·MeOH] were established. The coordination sphere around Zn2+ ion in 4·C6H5CH3, (or Ni2+ ion in 5·0.6 CHCl3 or Cu2+ ion in 6·C6H5CH3) is a distorted square planar (DSP) whereas for Mn3+ in 8·CH2Cl2·MeOH, it is a distorted trigonal bipyramid (DTBP) with O(1), N(1) and N(3) lying in the equatorial plane for 8·CH2Cl2·MeOH. The g value of 8.27 measured from the parallel polarization of X-band EPR spectra at 293 K is consistent with the high-spin mononuclear manganese(III) (S = 2) in 8. The magnitude of axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) in 8 was determined approximately as 3.0 cm?1 by the paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

10.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

11.
The synthesis of [Ti6O4(OiPr)8(O2CPh)8] ( 3 ) and [RuCl(N≡CR)5][RuCl4(N≡CR)2] ( 4a , R = Me; 4b , R = Ph), [Ru(N≡CPh)6][RuCl4(N≡CPh)2] ( 5 ) and [H3O][RuCl4(N≡CMe)2] ( 7a ) is discussed. Crystallization of 5 from CH2Cl2 gave trans-[RuCl2(N≡CPh)4] ( 6 ). The solid-state structures of 3 , 4a , b , 5 , 6 and 7a are reported. Complex 4b forms a 3D network, while 6 displays a 2D structure, due to π-interactions between the benzonitrile ligands. The (spectro)electrochemical behavior of 4a , b and 6 was studied at 25 and –72 °C and the results thereof are compared with [NEt4][RuCl4(N≡CMe)2] ( 7b ) and [RuCl(N≡CPh)5][PF6] ( 8 ). The electrochemical response of the cation and the anion in 4a , b are independent from each other. [RuCl(N≡CR)5]+ possesses one reversible RuII/RuIII process. However, [RuCl4(N≡CMe)2] was shown to be prone to ligand exchange and disproportionation upon formation of either a RuIV and RuII species at 25 °C, while at –72 °C the rapid conversion of the electrochemically formed species is hindered. In situ IR and UV/Vis/NIR studies confirmed the respective disproportionation reaction products of the aforementioned oxidation and reduction, respectively.  相似文献   

12.
Preparation and Properties of Soluble and Polysiloxane-Supported (Ether-Phosphine)ruthenium(II) Complexes Phosphine-modified Polysiloxanes of the type x SiO2 · [SiO3/2(CH2)6P(Ph)R] (x = 0 – 3, I–IV ) were prepared by hydrolytic condensation of (MeO)3Si(CH2)6P(Ph)R [ 1 ; R = CH2CH2OMe ( a ), CH2C4H7O ( b ), CH2C4H7O2 ( c ), Ph ( d )]. Crosslinking was achieved by cocondensation of 1 and Si(OEt)4. 2 SiO2 · [SiO3/2(CH2)6P(Ph)CH2CH2OMe] ( IIIa ) was investigated by means of 31P and 29Si CP-MAS-NMR-spectroscopy, especially in view of a quantification of silyl species which revealed the following ratios: T2:T4:Q2:Q3:Q4 = 76:158:48:135:82. Reaction of RuCl2(PPh3)3 with 3 moles of 1a gave fluxional RuCl2(P∩O)(P~O)2 ( 4a ). From its temperature dependent 31P{1H}-NMR spectrum the temperatures of coalescence and the corresponding activation enthalpies could be estimated at -25°C (46 kJ · mol?1) and +20°C (55 kJ · mol?1). Soluble 1a-d as well as their insoluble counterparts I-IV were treated with [RuCl2(CO)2]n to give all-trans-RuCl2(CO)2(PR3)2 ( 6 ). On heating (120°C) 6 could be transformed into isomeric cis, cis, trans-RuCl2(CO)2(PR3)2 ( 7 ). Decarbonylation occurred on irradiation of 6 . Polysiloxane-supported ruthenium complexes were proved to be active in the heterogeneous hydrogenation of crotonaldehyde. Thus, at p(H2) = 50 bat, T = 120°C, reaction time = 190 min, and at a molar ratio of aldehyde: Ru = 250:1, all-trans-RuCl2(CO)2(P~O)2 ( 6f , O,P = IIIa ) effected a conversion of 50%, crotyl alcohol being formed in comparatively high selectivities. Moreover, no loss of metal or ligand from the support could be observed.  相似文献   

13.
Crystal forms of cobalt(III) tris(2-aminoethanolate) hydrates, i.e., red cubic crystals of the composition fac-[Co(NH2CH2CH2O)3] · 5.44H2O (fac-I · 5.44H2O) and blue prismatic crystals of the composition mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) were studied by the 59Co, 13C NMR and X-ray diffraction methods. It was found that mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) is a new pseudopolymorphic modification of fac-[Co(NH2CH2CH2O)3] · 3H2O (fac-I · 3H2O), while fac-I · 3H2O represents a new polymorphic modification of the complex mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) described previously. The comparative analysis of the spectra revealed dynamic equilibrium between these geometric isomers; the fac-isomer is stable in aqueous solutions.  相似文献   

14.
Homo-hetero binuclear cationic complexes with the formulation [(η6-arene)RuCl(μ-dpp)(L)]+6-arene = benzene; L = PdCl2 (1a); PtCl2 (1b), and η6-arene = p-cymene; L = PdCl2 (2a); PtCl2 (2b)), [(η6-arene)RuCl(μ-dpp)(L)]2+6-arene = p-cymene; L = [(η6-C6H6)RuCl] (2c), and [(η6-C10H14)RuCl] (2d)) were prepared. Molecular structure of the representative homo binuclear complex [{(η6-C10H14)RuCl}(μ-dpp){(η6-C10H14)RuCl}](PF6)2 (2d) was determined crystallographically. Weak interaction studies on the complex 2d revealed stabilisation of the crystal packing by weak inter and intra molecular C-H?X (X = F, Cl, π) and π-π interactions. The C-H?F interactions lead to parallel helical chains and encapsulation of counter anion in self-assembled cavity arising from C-H?π and π-π weak interactions.  相似文献   

15.
Neutral binuclear ruthenium complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 of the general formula [{RuCl26p‐cym)}2 μ‐(NN)] (NN = bis(nicotinate)‐ and bis(isonicotinate)‐polyethylene glycol esters: (3‐py)COO(CH2CH2O)nCO(3‐py) and (4‐py)COO(CH2CH2O)nCO(4‐py), n =1–4), as well as mononuclear [RuCl26p‐cym)((3‐py)COO(CH2CH2OCH3)‐κN)], complex 9 , were synthesized and characterized using elemental analysis and electrospray ionization high‐resolution mass spectrometry, infrared, 1H NMR and 13C NMR spectroscopies. Stability of the binuclear complexes in the presence of dimethylsulfoxide was studied. Furthermore, formation of a cationic complex containing bridging pyridine‐based bidentate ligand was monitored using 1H NMR spectroscopy. Ligand precursors, polyethylene glycol esters of nicotinic ( L1 · 2HCl– L4 · 2HCl and L9 · HCl) and isonicotinic acid dihydrochlorides ( L5 · 2HCl– L8 · 2HCl), binuclear ruthenium(II) complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and mononuclear complex 9 were tested for in vitro cytotoxicity against 518A2 (melanoma), 8505C (anaplastic thyroid cancer), A253 (head and neck tumour), MCF‐7 (breast tumour) and SW480 (colon carcinoma) cell lines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrazine complexes [MCl(η6-p-cymene)(RNHNH2)L]BPh4 (16) [M = Ru, Os; R = H, Me, Ph; L = P(OEt)3, PPh(OEt)2, PPh2OEt] were prepared by allowing dichloro complexes MCl26-p-cymene)L to react with hydrazines RNHNH2 in the presence of NaBPh4. Treatment of ruthenium complexes [RuCl(η6-p-cymene)(RNHNH2)L]BPh4 with Pb(OAc)4 led to acetate complex [Ru(κ2–O2CCH3)(η6-p-cymene)L]BPh4 (7). Instead, the reaction of osmium derivatives [OsCl(η6-p-cymene)(CH3NHNH2)L]BPh4 with Pb(OAc)4 afforded the methyldiazenido complex [Os(CH3N2)(η6-p-cymene)L}]BPh4 (8). Treatment with HCl of this diazenido complex 8 led to the methyldiazene cation [OsCl(CH3NNH)(η6-p-cymene)L}]+ (9+). The complexes were characterised spectroscopically and by X-ray crystal structure determination of [OsCl(η6-p-cymene)(PhNHNH2){PPh(OEt)2}]BPh4 (6b) and [Ru(κ2–O2CCH3)(η6-p-cymene){PPh(OEt)2}]BPh4 (7b).  相似文献   

17.
The complexes [RuCl(CO)(PPh3)2(HBIm)] and [RuH(CO)(PPh3)2(1,10-phen)]Cl·H2O·(CH3)2O have been prepared and studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The complexes were prepared in the reactions of [RuHCl(CO)(PPh3)3] with 2-(hydroxymethyl)benzimidazole or 1,10-phenanthroline two hydrate in acetone. The electronic spectra of the obtained compounds have been calculated using the TDDFT method. The luminescence properties of these complexes were examined.  相似文献   

18.
The thermal decomposition of [RuCl26-p-cymene)]2 (1) and its biologically active N-alkylphenothiazine compounds of composition L[RuCl36-p-cymene)] where L = CPH+ (2), TFH+·HCl (3), and TRH+ (4) (chlorpromazine hydrochloride, CP·HCl; trifluoperazine dihydrochloride, TF·2HCl; and thioridazine hydrochloride, TR·HCl, respectively) has been studied. The crystal and molecular structure of compound 3 was determined earlier by single crystal X-ray diffraction analysis. The thermal data were collected by simultaneous TG/DSC measurements. For evolved gas detection, the qualitative reaction of chlorides with AgNO3 in an acidic solution was applied. The measurements were carried out in the temperature range to 700 °C in nitrogen atmosphere. Compounds of L[RuCl36-p-cymene)] crystallize with water or water/2-propanole. On the basis of thermal data, the trend in the solvent bonding energies was assessed.  相似文献   

19.
The treatment of optically P-chiral tetraphosphine, (3S,6R,9R,12S)-6,9-di-tert-butyl-2,2,3,12,13,13-hexamethyl-3,6,9,12-tetraphosphatetradecane (1), with rhodium(I), palladium(II), and ruthenium(II) complex precursors led to the selective formation of mono-, di-, or trinuclear homo- or heterometallic complexes, [Rh(1)]SbF6 (4), [{Rh(nbd)}2(1)](SbF6)2 (3), [{Pd(η3-allyl)}2(1)](SbF6)2 (5), [{RuCl(η5-C5(CH3)5)}2(1)] (6), and [{RuCl26-benzene)}2(PdCl2)(1)] (8). These complexes were characterized by NMR and X-ray crystallographic analysis.  相似文献   

20.
The diastereoselective κ2-P,N-coordination of a chiral tricyclic β-iminophosphine ligand to the half-sandwich ruthenium(II) fragments [RuCl(η6-arene)]+ (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), [Ru(η6-p-cymene)(NCMe)]2+ and [Ru(η5-C5H5)(NCMe)]+ is described. The structures of the resulting mono- and dicationic cymene derivatives have been confirmed by X-ray crystallography. Studies on the catalytic activity of these Ru(II) compounds in Diels–Alder cycloaddition processes are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号