首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oligodeoxyribonucleotides were synthesized that contain a novel nucleoside, 2′-O-(2-oxoethyl)arabinouridine. Whereas such oligonucleotides showed only a slight reduction in the TM values of their complexes with complementary DNA, a significant destabilization was observed in the case of duplexes formed with RNA. This may be explained by the C2′-endo conformation of 2′-O-(2,3-dihydroxypropyl)arabinouridine as demonstrated by NMR experiments in D2O. The modified oligonucleotides were used to synthesize a number of conjugates with dyes, biotin and a N-modified laminin peptide, by hydrazone and oxime formation. We suggest that the 2′-arabinoaldehyde-containing DNA duplexes may be valuable tools for affinity modification of DNA-binding proteins.  相似文献   

3.
The reactions of histamine, the natural dipeptide carcinine (-Ala-HA), and its analogs with 5"-monodeoxyribonucleotides (dNMP) in the presence of triphenylphosphine, 2,2"-dipyridyl disulfide, and N-methylimidazole were studied. The yield of phosphamide derivatives decreases from 72% to 17% as the length of the linker group between the imidazole ring and the terminal aliphatic amino group is increased. Hydrolytic stability of the resulting conjugates was examined. The stability of the bonds in the —O—P(O)2—NH— group linking the nucleotide and peptide portions of the conjugate depends on the nature of the heterocyclic base of the nucleotide and decreases in the series dTMP > dCMP > dAMP.  相似文献   

4.
The 13C, 15N CP MAS NMR and FT-IR spectra of dioxomolybdenum (VI) complexes of trans-N,N′-bis-(R-salicylidene)-1,2-cyclohexanediamine (R=H, R=3,5-diCl, R=3,5-diBr, R=4,6-diOCH3), trans-N,N′-bis-(2-OH-naphthylidene)-1,2-cyclohexanediamine and trans-N-(salicylidene)-N′-(2-OH-naphthylidene)-1,2-cyclohexanediamine have been measured. Comparative analysis of the NMR and IR spectra of the complexes with those of the corresponding ligands has shown that the complexation of the di-Schiff bases leads to changes in the conformation of the ligands and the charge redistribution. The asymmetric structure and non-planar structure of the complexes have been suggested.  相似文献   

5.
Reactions of 2-fluoro-3-methylbuta-1,3-diene with diazomethane in ether at 15 °C and with diazocyclopropane generated in situ by decomposition of N-cyclopropyl-N-nitrosourea in the presence of K2CO3 in CH2Cl2 at –10 °C selectively involve the double bond at the methyl group to give 3-(1-fluorovinyl)-3-methylpyrazolines. Thermal dediazotization of the latter at 250 °C yields 1-(1-fluorovinyl)-1-methylcyclopropane and -spiropentane 5, which are capable of isomerizing, under more severe conditions (400—600 °C), into 1-fluoro-2-methylcyclopent-1-ene and 5-fluoro-4-methylspiro[2.4]hept-4-ene (7), respectively. Spiropentane derivative 5 partially isomerizes into 1-fluoro-2-methyl-3-methylidenecyclohex-1-ene. In a similar way, thermolysis of 6-(2,3,3-trifluorocyclobut-1-enyl)-4,5-diazaspiro[2.4]hept-4-ene at 400 °C gives a mixture of 1-(spiropentyl)-2,3,3-trifluorocyclobut-1-ene and 2,3,3-trifluoro-1-(2-methylidenecyclobutyl)cyclobut-1-ene. Thermolysis of 1-cyclopropyl-2,3,3-trifluorocyclobut-1-ene at 550—620 °C affords a mixture of 1-(trifluorovinyl)cyclopentene and 2,3-difluorotoluene.  相似文献   

6.
Decomposition of N-nitroso-N-cyclopropylureas at 5—7 °C on treatment with K2CO3 containing 15—20% H2O allows simultaneous generation of both substituted diazocyclopropanes and cyclopropyldiazonium ions, which can react according to 1,3-dipolar cycloaddition or azo-coupling pattern with appropriate substrates. The nature of substituents in the cyclopropyl ring have a pronounced influence on the product ratio (and, probably, on the equilibrium between the diazo compound and the diazonium ion). Thus, on treatment with a base in the presence of equimolar amounts of methyl metacrylate as a trap for the diazo compound and 2-naphthol as a trap for the diazonium ion, N-cyclopropyl- and N-(2,2-dimethylcyclopropyl)-N-nitrosourea azo coupling products predominate. Conversely, N-(2,2-dichlorocyclopropyl)-N-nitrosourea is transformed predominantly into 1,3-cycloaddition products. A rationalization for the experimental data is proposed.  相似文献   

7.
2’-O-(2,3-Dihydroxypropyl)arabinouridine-containing oligodeoxyribonucleotides were synthesized starting from a new modified nucleoside, viz., 2’-O-(2,3-dihydroxypropyl)arabinouridine, and the corresponding 3’-phosphoramidite. Oxidation of these oligodeoxyribonucleotides with sodium periodate afforded oligonucleotides containing 2’-O-(2-oxoethyl)arabinouridine residues. Subsequent modification of the aldehyde-containing oligonucleotides involved the reactions with 9-hydrazinoacridine and N-aminooxyacetyl peptide and reductive amination by 4-(1-pyrenyl)butyrohydrazide and biotin hydrazide. Thermal stabilities of duplexes of modified oligodeoxyribonucleotides with complementary oligodeoxyribonucleotides are slightly lower than those of natural duplexes. Duplexes with complementary oligoribonucleotides are substantially destabilized.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 233–241, January, 2005.  相似文献   

8.
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.  相似文献   

9.
Novel glycopolymers have been prepared from ethylene–vinyl alcohol copolymers, EVOH. For that purpose, three distinct aminosaccharides (N-(4-aminobutyl)-d-gluconamide (NABG), N-(4-aminobutyl)-O-β-d-galactopyranosyl-(1 → 4)-d-gluconamide (NABL) and N-(4-aminobutyl)-O-β-d-glucopyranosyl-(1 → 4)-d-gluconamide (NABM) have been synthesized. The previous functionalization of these EVOH copolymers is mandatory to activate their hydroxyl reactivity before the subsequent coupling reaction with the aminosaccharides. The activation with carboxylic acid groups by reaction with phthalic anhydride has been chosen in the current investigation because of its almost quantitative yield and the subsequent high modification extent reached (>60%). The glycopolymers that turned out water-soluble (i.e., those based on NABL and NABM) have shown a reversible network formation unusually described in glycopolymers. In addition, their capability to interact with lectins, particularly Concanavalin A and Ricinus communis Agglutinin, has confirmed the specificity of lectin recognition in these glycopolymers.  相似文献   

10.
Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs 1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs 1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.  相似文献   

11.
Transformation products of the cationic rhodium complex [(1,5-COD)Rh(—)R,R-DIOP]+CF3SO3 (1) (COD is cycloocta-1,5-diene and DIOP is (±)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane), which were obtained in its reactions with molecular hydrogen, base (NEt3), and solvents in the absence of a substrate, were investigated by 1H and 31P NMR spectroscopy. The solvate complexes [(Solv)2Rh(—)R,R-DIOP]+CF3SO3 , which were generated from complex 1 in its reaction with molecular hydrogen, underwent destruction of the diphosphine ligand with elimination of benzene and were subjected to oxidation by traces of moisture and oxygen to form the DIOP dioxide complex with RhI. In the absence of hydrogen, complex 1 in solutions produced the diphosphine dioxide rhodium(i) complex and mono- and binuclear rhodium(i) solvate complexes. The scheme of deactivation of the complex in the absence of the substrate was proposed. The catalytic activity of the solvate complexes [(ArH)Rh(—)R,R-DIOP]+CF3SO3 , which contain benzene, p-xylene, and mesitylene in the coordination sphere, was studied in hydrogenation of Z--acetamidocinnamic acid.  相似文献   

12.
The reaction of hexafluoro-cyclo-triphosphazene P3N3F6 with ammonia in acetonitrile has been studied. New compounds, (2-imino-2,4,4,6,6-pentafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-trienyl)-2-amino-4,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F5–NH–P3N3F4NH2 (2) and cis and trans isomers of non-gem-2,4-diamino-2,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F4(NH2)2 (4, 5), were detected by GC/MS, and 31P NMR spectroscopy in reaction mixtures. X-ray diffraction analysis of P3N3F5–NH–P3N3F4NH2 (2) revealed two conformational polymorphs, 2A and 2B, the latter being built up of two different conformers that were further denoted as 2Ba (the same as the single conformer in 2A) and 2Bb. The compound 2 was characterized by spectroscopic methods and its 2D potential energy surface (PES) was described by density functional theory computations depending on two dihedral angles. The calculated PES spans over 30 kJ/mol in energy including 8 local minima and all first and second order saddle points. The occurrence of the two experimentally observed conformers 2Ba and 2Bb seems to be governed by crystal packing effects.  相似文献   

13.
N-(1,3,3-Trideuterio-2-methylidenecyclopropyl)-N-nitrosourea was synthesized and its decomposition on treatment with K2CO3 in the presence of acrylonitrile and ethyl acrylate or on treatment with MeONa in the absence of unsaturated substrates was studied. The rate of decomposition of the nitrosourea is much lower than that of the nondeuterated analog. The use of acrylates for trapping the intermediate 3,3-dideuterio-1-diazo-2-methylidenecyclopropane results in the corresponding 2"-methylidenespiro[4,5-dihydropyrazole-5,1"-cyclopropanes] containing two deuterium atoms in the cyclopropane fragment. The resulting dihydropyrazoles are isomerized almost entirely over a period of 1—3 days to give a mixture (1 : 1) of isopropenylpyrazoles in which both deuterium atoms occur either in the methyl or in the methylidene groups of the isopropenyl substituent. A possible mechanism of this transformation is considered.  相似文献   

14.
15.
Synthesis of a series of 2′-O-[2-[(N,N-dialkylamino)oxy]ethyl]-modified 5-methyluridine nucleoside phosphoramidites and solid supports are described. Using these monomers, modified oligonucleotides containing phosphodiester linkages were synthesized in high yields. These modified oligonucleotides showed enhanced binding affinity to the complementary RNA (and not to DNA) and excellent nuclease stability with t1/2>24 h. The human serum albumin binding properties of modified oligonucleotides have been evaluated to assess their transport and toxicity properties.  相似文献   

16.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

17.
C28H36O10. KSCN is monoclinic, space groupP21 withZ=2,a=10.390(3),b=8.959(7),c=16.377(7) Å, =92.49(5)°. FinalR=0.053 for 1437 reflections measured at room temperature. The K ion lies on the least-squares plane formed by the six oxygen atoms in the macrocyclic ring. The SCN ion was found on the same face of the macrocycle as the chiral glucopyranoside moiety.Methyl-4,6-O-benzylidene-2,3-O-(1,2-bis(ethoxyethoxy)benzenediyl)--d-glucopyranoside.  相似文献   

18.

Abstract  

Development of therapeutically active oligonucleotides for sequence-specific gene knockdown relies on chemical modifications that confer high stability and target affinity and ideally enable cellular uptake. 2′-O-Lysylaminohexyluridine-containing antisense and siRNA oligonucleotides have been shown to be well suited for gene knockdown. They are highly resistant to enzymatic degradation while having good affinity for the targeted RNA strand and efficiently down-regulate their target in cell culture tumor models. The 2′-O-lysylaminohexyl modification was expanded to adenosine nucleosides. The corresponding phosphoramidite building block was prepared in a straightforward procedure comprising six steps starting from adenosine. After 2′-O-alkylation with N-(6-bromohexyl)phthalimide and removal of the N-protecting group, the protected lysine was specifically attached to the alkylamino group. Incorporation of 2′-O-lysylaminohexyladenosine nucleotides in a test sequence confirmed that the cationic chains lead only to minor duplex destabilization and do not disturb the duplex structure. Results further emphasize the advantageous properties of 2′-O-lysylaminohexyl modified oligonucleotides for therapeutic applications.  相似文献   

19.
Acetylation of (±)-1-phenylnon-2-yn-1-ol, (±)-1-phenylhept-1-yn-3-ol, and (±)-1-phenylundec-4-yn-3-ol ((±)-5) in the presence of lipase from Candida cylindracea (CCL) proceeds slowly to give products with ee 20%. The acetates of these alcohols are hydrolyzed in the presence of porcine pancreatic lipase (PPL) equally unsatisfactorily. The (6-arene)tricarbonylchromium complex of alcohol (±)-5 is acetylated in the presence of CCL up to 22% conversion to give (R)-acetate whose oxidative decomplexation followed by saponification results in alcohol (R)-(–)-5 with ee 95%. The configuration of alcohols (–)-5 and (+)-5 was determined by NMR spectroscopy of their esters with (R)- and (S)-Mosher"s acids.  相似文献   

20.
N6-methyladenosine(m6A) is the most abundant modification in mRNA. Studies on proteins that introduce and bind m6A require the efficient synthesis of oligonucleotides containing m6A. We report an improved five-step synthesis of the m6A phosphoramidite starting from inosine, utilising a 1-H-benzotriazol-1-yloxytris(dimethylamino)phosphoniumhexafluorophosphate (BOP)-mediated SNAr reaction in the key step. The route manifests a substantial increase in overall yield compared to reported routes, and is useful for the synthesis of phosphoramidites of other adenosine derivatives, such as ethanoadenosine, an RNA analogue of the DNA adduct formed by the important anticancer drug Carmustine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号