首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A universal probe method for measuring the temperature of large clusters (nanoparticles) in a cluster beam has been proposed and experimentally implemented. The temperature of large van der Waals clusters (nanoparticles) (CO2) N (where N ⩾ 102 is the number of monomers in a cluster) in the cluster beam is measured using this method with SF6 molecules as miniature probe thermometers. The SF6 molecules are captured by the (CO2) N clusters in intersecting cluster and molecular beams and sublimate from the surface of the clusters, carrying information on the velocity and temperature (internal energy) of the clusters. The velocity (kinetic energy) of SF6 molecules sublimating from the surface of the clusters has been measured by the time-of-flight method and the temperature of the clusters has been determined as T cl = (105 ± 15) K.  相似文献   

2.
The method is described and the experimental results are presented on the temperature determination of the (CF3I) N clusters in a beam (N ⩽ 102 is a number of monomers in a cluster) using SF6 molecules from intersecting molecular beam as probe thermometers. The SF6 molecules are captured by clusters in the crossed cluster and molecular beams and, after a certain time, sublimate from the surface of clusters carrying information on the velocity and temperature (internal energy) of clusters. Using time-of-flight (TOF) method the kinetic energy (velocity) of sublimated SF6 molecules was measured and the temperature of clusters was determined to be T cl = (88 ± 15) K.  相似文献   

3.
The infrared-laser-radiation-controlled capture of chromophore molecules (on an example of SF6) by cold nanoclusters of noble gases (Xe N , N ≥ 100–1000 is the number of atoms in a cluster) in the crossed molecular and cluster beams has been investigated by a new method based on the selective vibrational excitation of molecules by an intense infrared laser pulse before their capture by clusters, which leads to a significant increase in the probability of their desorption from the surface of clusters as compared to the unexcited molecules. The possibility of using the proposed method for the selective doping of clusters with molecules, laser separation of isotopes, and selective transport of molecules to the surface has been discussed.  相似文献   

4.
It has been found that collisions of highly vibrationally excited SF6 molecules (with the vibrational energy E vib ≥ 0.5–2.0 eV) with Ar N clusters (where N ≤ 30–40 is the number of atoms in a cluster) in crossed molecular and cluster beams result in capture of molecules followed by complete disintegration of the clusters. Possible applications of the effect for selective doping of clusters with molecules, laser separation of isotopes, and selective transport of molecules to the surface are discussed.  相似文献   

5.
The processes of cluster formation in liquid alcohols, water, methanol, n-hexanol, and n-hexane have been investigated by the method of flicker-noise spectroscopy. Two types of clusters — clusters with a close-packed structure and clusters with a loose structure — have been detected. The energy of formation of different clusters in methanol and n-hexane ranges, respectively, from −250 to +250 J/mole and from −50 to +50 J/mole. The smallest clusters of methanol, n-hexanol, water, and n-hexane consist, respectively, of six, two, eleven, and two molecules, and their largest clusters represent oscillators consisting, respectively, of 50,400, 17,200, 93,500, and 33,150 molecules at 274 K. In methanol at 271 K, more than 44 types of clusters consisting of 6, 97, 152, 219, 297, 492, 1029, 1368, 1560, etc. molecules were detected. In n-hexanol at 273 K, 57 types of clusters were detected. Models of small clusters are proposed. In water, the content of close-packed clusters is maximum at 277 K. The energy of formation/decomposition of small clusters in water ranges from −0.4 to +0.4 kJ/mole and increases with increase in the water temperature. The hysteresis of transformation of the (H2O)280 cluster in the process of heating and cooling of water in the temperature range 273–280 K was detected. Series of energy spectra of clusters in liquids at different temperatures are presented and discussed. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 305–312, May–June, 2005.  相似文献   

6.
A temperature measurement technique using SF6 molecules as tiny probe thermometers is described, and results are presented, for large (CO2) N van der Waals clusters (with N ≥ 102) in a cluster beam. The SF6 molecules captured by (CO2) N clusters in crossed cluster and molecular beams sublimate (evaporate) after a certain time, carrying information about the cluster velocity and internal temperature. Experiments are performed using detection of these molecules with an uncooled pyroelectric detector and infrared multiphoton excitation. The multiphoton absorption spectra of molecules sublimating from clusters are compared with the IR multiphoton absorption spectra of SF6 in the incoming beam. As a result, the nanoparticle temperature in the (CO2) N cluster beam is estimated as T cl < 150 K. Time-of-flight measurements using a pyroelectric detector and a pulsed CO2 laser are performed to determine the velocity (kinetic energy) of SF6 molecules sublimating from clusters, and the cluster temperature is found to be T cl = 105 ± 15 K. The effects of various factors on the results of nanoparticle temperature measurements are analyzed. The potential use of the proposed technique for vibrational cooling of molecules to low temperatures is discussed.  相似文献   

7.
We explore the lowest energy structures and investigate the structural and electronic properties of small AgN (N = 1–10) clusters by employing an ab-initio self-consistent density functional method in the local density approximation. The calculation of binding energy, bond length and the energy difference of HOMO–LUMO states have been carried out in a large energy interval for different isomeric forms of Ag clusters. The cluster binding energies increases rapidly with cluster size, which is consistent with the size dependence properties of clusters but our values are slightly higher than the other calculations.  相似文献   

8.
It has been found that SF6 molecules captured by large van der Waals clusters (CO2) N (where N ≥ 102 is the number of monomers in a cluster) in intersecting molecular and cluster beams sublimate from the surface of clusters after a certain time and carry information on the velocity and temperature (internal energy) of clusters. Experiments have been carried out for detecting these molecules by means of a pyroelectric detector and the infrared multiphoton excitation method. The multiphoton absorption spectra of molecules sublimating from the surface of clusters have been obtained. The temperature of the (CO2) N nanoparticles in the cluster beam has been estimated using these spectra and comparing them with the infrared multiphoton absorption spectra of SF6 in the initial molecular beam.  相似文献   

9.
The thermodynamics properties of noble metal clusters AuN, AgN, CuN, and PtN (N = 80, 106, 140, 180, 216, 256, 312, 360, 408, 500, 628, 736, and 864) are simulated by micro-canonical molecular dynamics simulation technique. The potential energy and heat capacities change with temperature are obtained. The results reveal that the phase transition temperature of big noble metal clusters (N ⩾ 312 for Au, 180 for Ag and Cu, and 360 for Pt) increases linearly with the atom number slowly and approaches gently to bulk crystals. This phenomenon indicates that clusters are intermediate between single atoms and molecules and bulk crystals. But for the small noble clusters, the phase transition temperature changes irregularly with the atom number due to surface effect. All noble metal clusters have negative heat capacity around the solid-liquid phase transition temperature, and hysteresis in the melting/freezing circle is derived in noble metal clusters.  相似文献   

10.
A revised potential energy function that has been fitted to the latest set of Kebarle and coworkers [1982, J. Am. chem. Soc, 104, 1462] entropy and enthalpy measurements at T = 300 K is presented. The model assumes a rigid hydronium unit and accounts for all orders of many-body interactions explicitly. The difference with the older function that had been based on earlier measurements by Kebarle and co-workers [1972, J. Am. chem. Soc, 94, 7627; 1967, J. Am. chem. Soc, 89, 6393] is that more compact clusters are generated. We have studied the structural properties of water clusters in the size range 5–80 at T = 250 K within the framework of the (μPT) Grand Canonical ensemble. Clusters with sizes less than about 10 water molecules consist of a four-coordinated first shell, where the fourth water molecule is hydrogen bonded to the oxygen atom of the hydronium ion. The hydration number goes through a minimum value ~1.6, for a cluster size around 50, and it starts increasing again with further cluster growth, to ~2.5 for a cluster size of 250 water molecules, which is the largest cluster examined. On the other hand the water molecule coordination number shows a monotonic increase with cluster size. In small clusters, less than 10, water molecules prefer to be arranged in a chain-like fashion; at sizes around 50, tri-coordinated clathrate-like structures dominate whereas with further size increase the coordination number eventually levels off to the experimental bulk value, at 4.6.  相似文献   

11.
The self-sputtering processes of (111) Si and Al surfaces under bombardment by Si N and Al N ions and clusters (N = 1−60) with the same energy per particle-projectile atom (1 keV/atom) are studied in this paper. The nonlinear effects produced in the target during the development stage of an atomic-collision cascade and during the postcascade stage are analyzed, and a correlation between these effects and secondary emission characteristics is found. The study has been carried out in the framework of classical molecular dynamics. As a result, a number of features of (111) Si and Al surface sputtering and erosion have been revealed. Thus, it has been established that the sputtering yield increases nonadditively as the size N of the implanted cluster increases at N > 10, which is related to the appearance of nonlinear cascades and the postcascade heat spike, and is accompanied by microcrater formation. It is shown that the implantation of clusters into the Si target leads to the formation of amorphous regions.  相似文献   

12.
It is shown that, when highly vibrationally excited SF6 molecules (with vibrational energy E vib ≥ 0.5–2 eV) collide with weakly bound van der Waals Ar N , Kr N , or (N2) N (N ≤ 30–40 atoms in a cluster) clusters in intersecting molecular and cluster beams, the molecules are trapped by the clusters, the clusters then undergo full disintegration, and the trapped molecules become free. The method of studying this process and the results obtained are described. The possibilities of application of this method for selective doping of clusters by molecules, laser separation of isotopes, and selective transportation of molecules to a surface are discussed.  相似文献   

13.
We study the ground-state energy of a classical artificial molecule formed by two-dimensional clusters (artificial atoms) of N/2 charged particles separated by a distance d. For the small molecules of N = 2 and 4, we obtain analytical expressions for this energy. For the larger ones, we calculate the ground-state energy using molecular dynamics simulation for N up to 128. From our numerical results, we are able to find out a function to approximate the ground-state energy of the molecules covering the range from atoms to molecules for any inter-atom distance d and for particle number from N = 8 to 128 within a difference less than one percent from the MD data.  相似文献   

14.
The atomic structures of various isomers of free Ti N (N = 6–15) titanium clusters have been studied by molecular dynamics using the many-body interaction potential in the tight binding model. The following parameters of the cluster structure have been calculated: average bond length and energy, coordination number, and frequencies (probabilities) of their appearance. An increase in the cluster size N is accompanied by increased values of these parameters. It is established that the frequency of appearance of an isomer with a given N value increases with the bond energy. The most probable structures of clusters with N = 10–15 correspond to maximum values of the atomic structure parameters among all isomers of a given size.  相似文献   

15.
强激光场中原子团簇的电离和光辐射   总被引:2,自引:2,他引:0  
郝希平  宋霄薇 《光子学报》2000,29(6):537-540
通过数值求解一维含时薛定谔方程,研究了原子与原子围簇的电离、电子的时间演化和光辐射现象。结果表明,原子团簇比原子更易于电离,原子团簇中电子的时间演化和原子中电子的时间演化不同,光辐射频率也要高很多。  相似文献   

16.
The interaction of water clusters with acetylene molecules at T = 230 K was studied by the molecular dynamics method. The structure of clusters was analyzed by constructing Voronoi polyhedra. Water clusters interacting with C2H2 molecules are characterized by a diversity of H-bond orientations, a more uniform distribution of H-bonds over the cluster volume, a larger number of bonds per atom, and smaller bond lengths. The spectrum of bond lengths broadens as the number of acetylene molecules interacting with the water cluster increases. C2H2 molecules have a pressing action on water clusters.  相似文献   

17.
Abstract

For wüstite Fe1?z O (z < 0.08) an energetic model accounts for the stability of cubic defect clusters (m/n) which are partly ordered in the crystal. The Gibbs energy GT (N) associated with clusters, including their distorted envelope, is expressed as a sum of a volume term in N 3 and of surface terms in N 4; N is the number of bonds characteristic of the cluster size. In the case of a (10/4) type cluster, this energy is negative and minimum for Nm ranging between 4 and 5, when the volume and surface energies range between specific values. Using simple assumptions, a volume energy ?0.80 eV per vacancy is found in accordance with the value of stabilization energy calculated by theorists for the (10/4) cluster. The substitution of Fe2+ by Ca2+ should lead to a decrease of cluster size; this has been recently suggested by neutron diffraction studies.  相似文献   

18.
采用基于密度泛函理论的BP86/CEP-121G (O原子采用6-311G**基组)方法,对ScnO (n=1—9)团簇的几何结构、能量与稳定性、电子结构性质及其随团簇尺寸的变化趋势进行了研究.随着团簇原子个数的增加,O原子从位于Scn团簇结构的边缘转变为占据团簇的内部位置.O原子的掺入增加了Scn团簇的稳定性,使其能隙升高,并改变了其稳定性及电子结构性质随团簇尺寸变化的规律;含有偶数个Sc原子的氧化物团簇比其周围邻近的含有奇数个Sc原子的氧化物团簇具有相对较高的稳定性.ScnO团簇电离势的理论计算值与实验值符合得较好,而其电子亲和势呈现振荡交替上升的变化趋势;用最大化学硬度规律等方法表征了ScnO氧化物团簇的稳定性和电子结构性质. 关键词nO团簇')" href="#">ScnO团簇 几何结构 电子性质 密度泛函理论  相似文献   

19.
陈杭  雷雪玲  刘立仁  刘志锋  祝恒江 《中国物理 B》2010,19(12):123601-123601
The lowest-energy structures and the electronic properties of Mo2nNn(n=1-5) clusters have been studied by using the density functional theory(DFT) simulating package DMol 3 in the generalized gradient approximation(GGA).The resulting equilibrium geometries show that the lowest-energy structures are dominated by central cores which correspond to the ground states of Mo n(n = 2,4,6,8,10) clusters and nitrogen atoms which surround these cores.The average binding energy,the adiabatic electron affinity(AEA),the vertical electron affinity(VEA),the adiabatic ionization potential(AIP) and the vertical ionization potential(VIP) of Mo2nNn(n=1-5) clusters have been estimated.The HOMO-LUMO gaps reveal that the clusters have strong chemical activities.An analysis of Mulliken charge distribution shows that charge-transfer moves from Mo atoms to N atoms and increases with cluster size.  相似文献   

20.
利用非线性最小二乘法拟合在CCSD(T)/aug-cc-pVQZ理论水平下计算的相互作用能,得到了基态Ne-HBr复合物势能面的解析表达式.在此基础上,采用量子密耦方法计算了入射能量分别为40,60,80 和100meV时,Ne原子与HBr分子碰撞的分波截面,详细讨论了CCSD(T)势能面的长程吸引和短程各向异性相互作用对非弹性分波截面的影响.结果表明:(1)总非弹性分波截面主要来自j=0 →j′=1, 2跃迁.高J端的尾部极大是势能面长程吸引阱的贡献,主要来自j=0 →j′=1跃迁;低J端的主极大是短程排斥的贡献,主要来自j=0 →j′=2跃迁;极小值是短程排斥和长程吸引作用相互抵消的结果.(2)尽管不同入射能量时非弹性分波截面的峰值和极小值对应的总角动量量子数J各不相同,但它们对应于几乎相同的碰撞参数,取样势能面的相同部分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号