首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A combined analytical and numerical study of the Stokes flow caused by a rigid spheroidal particle translating along its axis of revolution in a viscous fluid is presented. The fluid is allowed to slip at the surface of the particle. The general solution for the stream function in prolate and oblate spheroidal coordinates can be expressed in an infinite-series form of semi-separation of variables. The slip boundary condition incorporating the shear stress at the particle surface is applied to this general solution to determine its unknown coefficients of the leading orders. The solution of these coefficients can be either numerical results obtained from a boundary-collocation method or explicit formulas derived analytically. The drag force exerted on the spheroidal particle by the fluid is evaluated with good convergence behavior for various values of the slip parameter and aspect ratio of the particle. The agreement between our hydrodynamic drag results and the relevant numerical solutions obtained previously using a singularity method is excellent. Although the drag force acting on the translating spheroid normalized by that on a corresponding sphere with equal equatorial radius increases monotonically with an increase in the axial-to-radial aspect ratio for a no-slip spheroid, it decreases monotonically as this aspect ratio increases for a perfect-slip spheroid. The normalized drag force exerted on a spheroid with a given surface slip coefficient in between the no-slip and perfect-slip limits is not a monotonic function of its aspect ratio. For a spheroid with a fixed aspect ratio, its drag force is a monotonically decreasing function of the slip coefficient of the particle.  相似文献   

2.
利用缩尺模型试验的方法研究了线性剪切流下涡激振动发生时柔性立管的阻力特性.文中基于光纤光栅应变传感器测得的模型应变信息,采用梁复杂弯曲理论计算了立管的平均阻力,继而分析了阻力系数沿管长方向和雷诺数的分布特性以及涡激振动对阻力系数的放大效应,并提出了用于估算柔性立管发生涡激振动时阻力系数的经验公式.结果表明:涡激振动对阻力系数有放大效应,使得立管局部阻力系数高达3.2;平均阻力系数在1.0×104到1.2×105的雷诺数区间内的值为1.3~2.0,并随雷诺数的增大而减小.本文提出的经验公式可准确估算高雷诺数下涡激振动发生时柔性立管的阻力系数,此经验公式考虑了流速、涡激振动主导模态以及主导频率对阻力系数的影响.   相似文献   

3.
The stochastic equations of continuum are used for determining the hydraulic drag coefficients. As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence intensity and scale instead of only on the Reynolds number are proposed for the classic flows of an incompressible fluid along a smooth flat plate and a round smooth tube. It is shown that the new expressions for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for the hydraulic drag coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds numbers. On the basis of these new dependencies, it is possible to explain that the differences between the experimental results for the fixed Reynolds number are caused by the difference in the values of flow fluctuations for each experiment instead of only due to the systematic error in the processing of experiments. Accordingly, the obtained general dependencies for the smooth flat plate and the smooth round tube can serve as the basis for clarifying the results of experiments and the experimental formulas, which used for continuum flows in different devices.  相似文献   

4.
The purpose of this work is to (a) determine the drag coefficient of three wind-driven systems (referred to as tumbleweeds) in a simulated Martian atmospheric boundary layer; two concepts from NASA Langley (LaRC) and one from Texas Tech University (TTU), and (b) perform a dynamic analysis of the TTU tumbleweed to establish the feasibility of operation in a simulated Martian environment. The TTU Wind Tunnel is used in order to determine the drag coefficient for the tumbleweeds in both the aerodynamic and atmospheric boundary layer (ABL) test sections. A comparison of the two mean drag coefficients for each tumbleweed model reveals the extent to which an ABL affects drag on the models. It appears that no transformation exists that can be used to transform aerodynamic-based drag coefficients into boundary-layer-based drag coefficients; therefore, reliance upon ABL tests is important. It is generally accepted that a complete ABL test under conditions of neutral atmospheric stability requires knowledge of the incoming (approach) mean velocity and turbulent intensity profile, spectral distribution, roughness height, and Reynolds number. Given the fact that limited data exists for the Martian flows, physical simulations of an atmospheric surface layer with knowledge of the mean velocity and general turbulence characteristics was developed in order to obtain drag coefficients for several tumbleweed wind platform designs. The tumbleweeds drag coefficients were effectively constant with the boundary layer affected coefficient less than the respective aerodynamically obtained coefficient. Of particular interest in this study is the TTU tumbleweed, which underwent extensive testing in order to obtain a force function to describe its aerodynamic characteristics in any orientation relative to the wind.  相似文献   

5.
柔性圆柱涡激振动流体力系数识别及其特性   总被引:2,自引:0,他引:2  
涡激振动是诱发海洋立管、浮式平台系泊缆和海底悬跨管道等柔性圆柱结构疲劳损伤的重要因素.目前,海洋工程中用于柔性圆柱涡激振动预报的流体力系数主要来源刚性圆柱横流向受迫振动的实验数据,存在一定缺陷和误差.本文综合考虑横流向与顺流向振动耦合作用,建立了柔性圆柱涡激振动流体力模型,运用有限元法和最小二乘法确定升力系数、脉动阻力系数和附加质量系数.为了准确识别柔性圆柱涡激振动流体力系数,设计并开展了拖曳水池模型实验,实验用柔性圆柱模型的质量比为1.82,长径比为195.5.通过与刚性圆柱流体力系数对比,深入分析了柔性圆柱流体力系数的特性.结果表明:柔性圆柱在一阶模态控制区,流体力系数随约化速度变化趋势与刚性圆柱大致相似;二阶模态控制区,升力系数和脉动阻力系数显著增大;附加质量系数在响应频率较低时与振动位移的相关性增强;当响应频率较低时,振动位移较大区域为能量耗散区,当响应频率较高时,振动位移较大区域为能量输入区.  相似文献   

6.
For numerical analysis of shock wave propagation in gas-particle mixtures, drag coefficients of a sphere in steady flows are generally used. However, it is shown both experimentally and numerically that a shock loaded solid sphere experiences unsteady drag forces. The paper describes a model of unsteady drag force and its effect on the structure of the non-equilibrium region behind a shock front traveling in a dusty gas. The results are compared with those obtained by using a steady drag coefficient and are discussed. It is demonstrated that the large drag force at the early stage of the interaction between shock-wave induced flow and a solid particle affects the flow structure that is obtained with a steady drag force.   相似文献   

7.
Flow around two oscillating cylinders in a side-by-side arrangement at Reynolds number (Re)=185 is simulated using the immersed boundary method. The purpose of this study is to investigate the combined effects of the gap between the two cylinders and their oscillation in the flow. The cylinders oscillate transversely to a uniform cross-flow with a prescribed sinusoidal function in the opposite direction, with the oscillation amplitude equal to 20% of the cylinder diameter. The gap between the two cylinders and the oscillating frequency are chosen as major variables for the parametric study to investigate their influence on the flow pattern. The ratio of mean gap distance between the two oscillating cylinders to the cylinder diameter is chosen to be 0.6, 1.0, 1.4, and 1.8, and the ratio of oscillating frequencies to the natural vortex shedding frequency of a fixed cylinder is 0.8, 1.0, and 1.2. Wake patterns and the drag and lift coefficients are described and compared with those from a single oscillating cylinder and two stationary cylinders. The wake patterns of two oscillating cylinders can be explained by flow mechanisms of two stationary cylinders, a single oscillating cylinder, and their combinations, and are in agreement with classifications of flow over two stationary cylinders presented in previous studies. In the case of two oscillating cylinders, the modulation phenomenon appears from a lower excitation frequency than in a single oscillating cylinder. Generally, oscillating cylinders have higher drag and root-mean-square (r.m.s.) values of drag coefficients than stationary cylinders.  相似文献   

8.
In the present paper, the commercial CFD code “Fluent” was employed to perform 2-D simulations of an entire process that included the flow around a fixed circular cylinder, the oscillating cylinder (vortex-induced vibration, VIV) and the oscillating cylinder subjected to shape control by a traveling wave wall (TWW) method. The study mainly focused on using the TWW control method to suppress the VIV of an elastically supported circular cylinder with two degrees of freedom at a low Reynolds number of 200. The cross flow (CF) and the inline flow (IL) displacements, the centroid motion trajectories and the lift and drag forces of the cylinder that changed with the frequency ratios were analyzed in detail. The results indicate that a series of small-scale vortices will be formed in the troughs of the traveling wave located on the rear part of the circular cylinder; these vortices can effectively control the flow separation from the cylinder surface, eliminate the oscillating wake and suppress the VIV of the cylinder. A TWW starting at the initial time or at some time halfway through the time interval can significantly suppress the CF and IL vibrations of the cylinder and can remarkably decrease the fluctuations of the lift coefficients and the average values of the drag coefficients; however, it will simultaneously dramatically increase the fluctuations of the drag coefficients.  相似文献   

9.
Abstract

A spectral method is developed based on the primitive variables for the time-dependent solution of the flow and the temperature past a spherical droplet. Both Chebyshev and Legendre polynomials are used to expand the velocity, pressure, and temperature in the radial and angular directions, respectively. The fractional time-stepping method suggested by Orszag (Orszag et al., 1980) is used for solving the flow and the pressure fields. Euler backward differencing is used for the integration of the energy equation. The computed steady-state drag coefficients are compared to those found in the literature for Reynolds numbers in the range from 0.5 to 50 for both the continuous and the dispersed phase. The transient drag coefficients and Nusselt numbers are compared with our previous study using a stream function-vorticity formulation (Nguyen et al, 1993). The comparison indicates that the present model is capable of predicting the correct nature of the flow and heat transfer associated with a droplet.  相似文献   

10.
Artificial neural networks (ANNs) are used as a new approach for the determination of the relations between drag coefficient and Cavitation Number with cavity geometry in supercavitating flows which have been most widely used in the hydrodynamics researches. Also the result of the ANNs as a cost function potentially will be used in an optimization algorithm. Instead of complex differential equations and limited experimental data, faster and simpler solutions were obtained using equations derived from the ANN model. For training of the ANN the numerical results are used that are obtained from a boundary element method (BEM). At this problem, a two-dimensional supercavitation potential inviscid flow pasts a symmetric two-dimensional cavitator, which is placed perpendicular to the flow in a channel of infinite width and immediately a cavity is formed behind the cavitator. It was found that the coefficient of multiple determination (R 2-value) between the actual and ANN predicted data is equal to about 0.9998 for the drag coefficient and Cavitation number. As seen from the obtained results, the calculated cavity geometry for all drag coefficients and Cavitation Numbers are obviously within acceptable limits.  相似文献   

11.
Flow control has shown a potential in reducing the drag in vehicle aerodynamics. The present numerical study deals with active flow control for a quasi-2D simplified vehicle model using a synthetic jet (zero net mass flux jet). Recently developed near-wall Partially-Averaged Navier–Stokes (PANS) method, based on the ζf RANS turbulence model, is used. The aim is to validate the performance of this new method for the complex flow control problem. Results are compared with previous studies using LES and experiments, including global flow parameters of Strouhal number, drag coefficients and velocity profiles. The PANS method predicts a drag reduction of approximately 15%, which is closer to the experimental data than the previous LES results. The velocity profiles predicted by the PANS method agree well with LES results and experimental data for both natural and controlled cases. The PANS prediction showed that the near-wake region is locked-on due to the synthetic jet, and the shear layer instabilities are thus depressed which resulted in an elongated wake region and reduced drag. It demonstrates that the PANS method is able to predict the flow control problem well and is thus appropriate for flow control studies.  相似文献   

12.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar flow and heat transfer characteristics of air around three isothermal heated horizontal cylinders in a staggered tube bank and around four isothermal heated horizontal cylinders in an in line tube bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface, including the zone beyond the separation point. The predicted values of total drag, pressure drag and friction drag coefficients, average Nusselt number, and the plots of velocity flow fields and isotherms are also presented.  相似文献   

13.
采用非结构网格的LU-SGS隐式算法计算三维Euler方程,数值模拟了不同马赫数以及不同攻角下某空心弹丸绕流流场,分析了流场的波系结构及其升阻力特性,计算结果表明空心弹丸的阻力系数比同口径的普通弹丸的阻力系数大约小30%,空心弹丸的阻力系数以及升力系数随攻角的变化规律与普通弹丸一致.  相似文献   

14.
采用非结构网格的LU-SGS隐式算法计算三维Euler方程,数值模拟了不同 马赫数以及不同攻角下某空心弹丸绕流流场,分析了流场的波系结构及其升阻力特性,计算 结果表明空心弹丸的阻力系数比同口径的普通弹丸的阻力系数大约小30{\%},空心弹丸的 阻力系数以及升力系数随攻角的变化规律与普通弹丸一致.  相似文献   

15.
为探索前缘线变化对吸气式高超声速飞机气动性能的影响,基于一种旁侧进气布局翼身融合体构型,在飞行马赫数6,攻角4°和高度26 km的巡航飞行条件下,结合运用增量修正参数化设计方法、均匀实验设计方法和计算流体力学模拟,分析了飞行器前缘型线与其升阻力系数及纵向压心等性能参数间的关系.计算结果表明,前缘线形状对飞行器升阻力系数明显高于其对纵向压心影响,设计空间范围内升力系数变化约21.3%,阻力系数变化约31.8%,升阻比变化范围约10.63%,但相对压心变化范围仅为3.87%.在此基础上,通过对典型构型物面压力分布进行分析,发现前缘线形状适当弯曲可利用飞行器下表面侧壁压缩产生的高压气流,利用二者的耦合效应使飞行器获得额外的升力增量.   相似文献   

16.
This paper presents an experimental determination of the virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant water. The purpose of this experiment was to determine the importance of virtual mass on the transient response of an INEL-type drag-disk flow meter.The results indicate that for a given void fraction, the virtual mass coefficient increases, and the drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing void fraction.Based on the measured virtual mass coefficients, it was concluded that when an INEL-type drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be neglected in the analysis of its response without appreciable error.  相似文献   

17.
In order to understand the aerodynamic properties of Japanese arrows, several types of shafts without fletching and various types of Japanese arrows were examined in a low-speed wind tunnel equipped with the JAXA 60-cm magnetic suspension and balance system. The main component of drag acting on the shaft is viscous drag from the boundary layer. This viscous drag can be evaluated analytically. A simple new method to estimate the effects of fletching on the lift of the arrow was proposed in which we found that lift is proportional to the angle of attack of the arrow but not to the rotation speed or angle. Time history results for the lift on rotating arrows in the magnetic suspension and balance system indicate that this method effectively estimates the lift on an actual rotating arrow in flight. The lift and pitching moment were mainly generated by fletching, and the drag from the fletching was similar in magnitude to that of the arrow shaft. For Japanese bamboo arrows tested with a field point, the drag, lift, and pitching moment coefficients were evaluated to be in the ranges of 3.5?C3.7, 0.4?C0.8, and ?0.15 to ?0.25, respectively, at Reynolds numbers of an arrow in flight.  相似文献   

18.
Rheological characteristics of trimethylolethane (TME) clathrate–hydrate slurry treated with drag-reducing surfactants were investigated. Friction coefficients and apparent viscosities were measured when the concentration of TME and its hydrate fraction treated with and without drag-reducing surfactants were changed in several steps. From the results, it is found that the surfactant addition causes effective drag reduction in a pipe flow when the hydrate fraction becomes high, while effective drag reduction disappears in the cases of low hydrate fraction. The results of viscosity measurements indicate that the TME molecules disturb the formation of shear-induced structures (SIS) causing drag reduction phenomena. To investigate this interaction between TME and surfactant micelles, the effect of TME concentration on viscosity and relaxation time of solutions was discussed. From this, it was found out that there exists a critical concentration of TME on the formation of SIS and that it becomes larger as shear rate increases. Thus, we conclude that this interaction between TME and micellar structures causes less drag reduction for the cases of low hydrate fraction, while the drag reduction appears in cases of high hydrate fraction because TME concentration in liquid phase becomes small.  相似文献   

19.
平板大攻角绕流升力和阻力系数的计算   总被引:1,自引:0,他引:1  
二维平板或二维对称薄翼型大攻角绕流升力和阻力系数与攻角之间存在的函数关系一般用数据表格的形式给出。本文根据垂直平板绕流阻力实验数据和对称薄翼型全攻角绕流实验数据,分析得到了平板大攻角绕流总压力及其升力分量和阻力分量系数的近似计算公式。结果表明:平板总压力系数约等于攻角正弦值的2倍;总压力的阻力分量系数约等于攻角正弦值平方的2倍;升力分量系数约为攻角2倍的正弦值。计算结果与两组试验数据具有较好的一致性。  相似文献   

20.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号