首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A fully implicit high-order preconditioned flux reconstruction/correction procedure via reconstruction (FR/CPR) method is developed to solve the compressible Navier-Stokes equations at low Mach numbers. A dual-time stepping approach with the second-order backward differentiation formula (BDF2) is employed to ensure temporal accuracy for unsteady flow simulation. When dynamic meshes are used to handle moving/deforming domains, the geometric conservation law is implicitly enforced to eliminate errors due to the resolution discrepancy between BDF2 and the spatial FR/CPR discretization. The large linear system resulted from the spatial and temporal discretizations is tackled with the restarted generalized minimal residual solver in the PETSc (portable, extensible toolkit for scientific computation) library. Through several benchmark steady and unsteady numerical tests, the preconditioned FR/CPR methods have demonstrated good convergence and accuracy for simulating flows at low Mach numbers. The new flow solver is then used to study the effects of Mach number on unsteady force generation over a plunging airfoil when operating in low-Mach-number flows. It is observed that weak compressibility has a significant impact on thrust generation but has a negligible effect on lift generation of an oscillating airfoil.  相似文献   

3.
The interaction between particles situated in close proximity and moving at supersonic speeds is investigated computationally. The simplest case of the motion of a single particle travelling behind a lead particle is used to elucidate the role of aerodynamic forces in the motion of a group of particles. The effect of the following parameters on the drag and lift forces acting on each of two particles of equal diameter in proximity is investigated: the free-stream Mach number, and the axial and lateral displacements of the trailing particle. The two-dimensional flow field is numerically simulated using an unsteady Euler CFD code to find the steady-state drag and lift coefficients for both particles. Three static zones of aerodynamic influence in the wake of the lead particle are identified, which are denoted as the entrainment, lateral attraction, and ejection zones. A non-dimensional representation of the zones of influence is given. It is shown that the dynamic entrainment of particles can occur even when the path of the trailing particle originates outside the entrainment and lateral attraction zones.  相似文献   

4.
A computational method is proposed to simulate 3D unsteady cavitating flows in spatial turbopump inducers. It is based on the code FineTurbo, adapted to take into account two‐phase flow phenomena. The initial model is a time‐marching algorithm devoted to compressible flow, associated with a low‐speed preconditioner to treat low Mach number flows. The presented work covers the 3D implementation of a physical model developed in LEGI for several years to simulate 2D unsteady cavitating flows. It is based on a barotropic state law that relates the fluid density to the pressure variations. A modification of the preconditioner is proposed to treat efficiently as well highly compressible two‐phase flow areas as weakly compressible single‐phase flow conditions. The numerical model is applied to time‐accurate simulations of cavitating flow in spatial turbopump inducers. The first geometry is a 2D Venturi type section designed to simulate an inducer blade suction side. Results obtained with this simple test case, including the study of its general cavitating behaviour, numerical tests, and precise comparisons with previous experimental measurements inside the cavity, lead to a satisfactory validation of the model. A complete three‐dimensional rotating inducer geometry is then considered, and its quasi‐static behaviour in cavitating conditions is investigated. Numerical results are compared to experimental measurements and visualizations, and a promising agreement is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
G. Emanuel  T.H. Yi 《Shock Waves》2000,10(2):113-117
A spatially and temporally local analysis is provided for unsteady, oblique shock waves, in which the flow is assumed to be two-dimensional or axisymmetric. Three unsteady parameters, in a laboratory frame, are viewed as the known independent variables. These are the upstream Mach number, the shock Mach number, and the angle of the shock relative to the instantaneous upstream velocity. Other steady and unsteady parameters, such as the velocity turn angles and downstream Mach numbers, are evaluated in closed form, in terms of these three quantities. Trends are assessed, and a sensitivity analysis is provided. It is suggested that the theory may find application in converting a shock capturing algorithm, at an early time during the computational process, into a shock fitting algorithm. Received 30 April 1999 / Accepted 29 November 1999  相似文献   

6.
A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional(2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method.  相似文献   

7.
This paper examines the shock wave dynamics of a biconvex aerofoil in transonic flight during acceleration and retardation. The aerofoil has a cord length of 1 m and air at infinity is at 101.325 kPa and 300 K. Using Fluent as the CFD software, constant velocity (steady state) simulations were conducted at transonic Mach numbers. The aerofoil was then accelerated at 1041m/s2 (106 g), starting at Mach 0.1, and decelerated at −1041m/s2, starting at Mach 1.6, through the same range of Mach numbers using time-dependent (unsteady) simulations. Significant differences were found in the transonic region between the steady and the unsteady aerodynamic forces. Analysis of the flow field in this region showed that acceleration-dependent variations in the position of the shock wave on the surfaces of the aerofoil were the main reason for this. As very high accelerations were used in order to emphasize differences, which do not have many practical applications, simulations using accelerations lower than 9 g were also conducted in order to confirm the results. The acceleration-dependent behaviour of other shock waves around the aerofoil, such as the bow shock in front of the aerofoil and the trailing wave were also examined. The trailing wave followed behind the aerofoil changing position with different accelerations at the same Mach number.   相似文献   

8.
Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases shows that they enable convergence toward solutions that are unstable to stationary and oscillatory disturbances, with either a single or multiple frequency content. Finally, comparisons with SFD are also performed, showing significant reduction in computer cost for complex flows by using the implicit multi-step MGM schemes.  相似文献   

9.
Direct numerical simulations (DNSs) are performed in order to study acoustic emissions generated during the transition of isothermal and non-isothermal mixing layers. The sound from temporally evolving mixing layers is computed directly using DNS for a computational domain, which includes both aerodynamic and acoustic fields. Good precision of the computed acoustic field is ensured by using a numerical code based on high-order finite difference schemes of quasi-spectral accuracy. Two- and three-dimensional simulations of mixing layers are performed for various Mach numbers and temperature ratios. For each case, the acoustic radiation of the mixing layer transition is investigated. Comparisons illustrate the importance of the combined effects of temperature and Mach number on the acoustic intensity. Qualitative agreement with existing experimental observations for hot jet flows is observed. It is also found that the appearance of three-dimensional motion leads to a substantial reduction of sound emissions. In the second part of this study, DNS data are used to perform acoustic analogy predictions. Excellent agreement between direct computations and predictions is obtained in all cases. Analysis of the source terms yields a new interpretation of temperature and Mach number effects, based on the predominance of one term over the other.  相似文献   

10.
K. Izumi  S. Aso  M. Nishida 《Shock Waves》1994,3(3):213-222
This paper describes experimental and numerical studies of the focusing process of shock waves reflected from various shapes of a parabolic reflector. The effect of incident shock strength on the focusing process was also investigated. Experiments were carried out in a conventional shock tube and a test gas was air for incident shock Mach numbers ranging from 1.1 to 2.0. In the experiments, the process of shock focusing was visualized by schlieren method. Numerical simulations were conducted for incident shock Mach numbers up to 3.0 by solving the two-dimensional unsteady Euler equations. The numerical results were compared with experiment for various parabolic reflector shapes and for various incident shock Mach numbers. Based on the experimental and computational results, the pattern of shock focusing and shock focusing mechanism are discussed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

11.
The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we recently developed to solve the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for both the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained. Received 7 February 2000/ Accepted 20 February 2001  相似文献   

12.
针对高空高马赫数飞行环境和强黏性干扰的物理特性, 在当地流活塞理论的基础上引入有效外形修正, 发展了黏性修正当地流活塞理论, 结合定常N-S方程解给出了高空高马赫数下针对该方法的有效外形的判据, 并通过数值算例对该判据进行了验证.通过对典型尖头薄翼和典型钝头翼的一系列二维非定常算例, 将该方法与一阶活塞理论、基于欧拉(Euler)方程的当地流活塞理论和非定常N-S方程数值解进行了对比. 结果显示在高度为40~70 km、马赫数为10~20范围内, 通过该方法计算得到的非定常气动力与非定常N-S方程数值解吻合较好, 明显优于活塞理论和基于Euler方程的当地流活塞理论.该方法克服了传统的活塞理论和当地流活塞理论不能用于高空高马赫数这类强黏性效应情况的弊端, 在较宽的马赫数、攻角、飞行高度范围内都有良好的适用性, 同时其计算效率远高于非定常N-S方程.  相似文献   

13.
The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 106, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks.  相似文献   

14.
High-repetition-rate PIV measurements were performed in the trisonic wind tunnel facility at the Bundeswehr University Munich in order to investigate the boundary layer parameters on a generic rocket model and the recirculation area in the wake of the model at Mach numbers up to Mach = 2.6. The data are required for the validation of unsteady flow simulations. Because of the limited run time of the blow-down wind tunnel, a high-repetition-rate PIV system was applied to obtain the flow statistics with high accuracy. The results demonstrate this method’s potential to resolve small-scale flow phenomena over a wide field of view in a large Mach number range but also show its limitations for the investigations of wall-bounded flows.  相似文献   

15.
An overset grid method was developed to investigate the interaction between a particle-laden flow and a circular cylinder. The method is implemented in the Pencil Code, a high-order finite-difference code for compressible flow simulation. High-order summation-by-parts operators were used at the cylinder boundary, and both bi-linear Lagrangian and bi-quadratic spline interpolation were used to communicate between the Cartesian background grid and the body-conformal cylindrical grid. The performance of the overset grid method was assessed to benchmark cases of steady and unsteady flows past a cylinder. Results show high-order accuracy and good agreement to the literature. Particle-laden flow simulations were performed, with inertial point particles impacting on a cylinder. The simulations reproduced results from the literature at a significantly reduced cost. Further, an investigation into blockage effects on particle impaction revealing that the previously published DNS data is less accurate than assumed for particles with very small Stokes numbers.  相似文献   

16.
At low Mach numbers, Godunov‐type approaches, based on the method of lines, suffer from an accuracy problem. This paper shows the importance of using the low Mach number correction in Godunov‐type methods for simulations involving low Mach numbers by utilising a new, well‐posed, two‐dimensional, two‐mode Kelvin–Helmholtz test case. Four independent codes have been used, enabling the examination of several numerical schemes. The second‐order and fifth‐order accurate Godunov‐type methods show that the vortex‐pairing process can be captured on a low resolution with the low Mach number correction applied down to 0.002. The results are compared without the low Mach number correction and also three other methods, a Lagrange‐remap method, a fifth‐order accurate in space and time finite difference type method based on the wave propagation algorithm, and fifth‐order spatial and third‐order temporal accurate finite volume Monotone Upwind Scheme for Conservation Laws (MUSCL) approach based on the Godunov method and Simple Low Dissipation Advection Upstream Splitting Method (SLAU) numerical flux with low Mach capture property. The ability of the compressible flow solver of the commercial software, ANSYS FLUENT , in solving low Mach flows is also demonstrated for the two time‐stepping methods provided in the compressible flow solver, implicit and explicit. Results demonstrate clearly that a low Mach correction is required for all algorithms except the Lagrange‐remap approach, where dissipation is independent of Mach number. © 2013 Crown copyright. International Journal for Numerical Methods in Fluids. © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
An implicit unsteady, multiblock, multigrid, upwind solver including mesh deformation capability, and structured multiblock grid generator, are presented and applied to lifting rotors in both hover and forward flight. To allow the use of very fine meshes and, hence, better representation of the flow physics, a parallel version of the code has been developed. It is demonstrated that once the grid density is sufficient to capture enough turns of the tip vortices, hover exhibits oscillatory behaviour of the wake, even using a steady formulation. An unsteady simulation is then presented, and detailed analysis of the time‐accurate wake history is performed and compared to theoretical predictions. Forward flight simulations are also presented and, again, grid density effects on the wake formation investigated. Parallel performance of the code using up to 1024 CPU's is also presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel flutter is developed in this paper. A well-validated full Navier–Stokes code is coupled with a finite-difference procedure for the von Karman plate equations. A subiteration strategy is employed to eliminate lagging errors between the fluid and structural solvers. This approach eliminates the need for the development of a specialized, tightly coupled algorithm for the fluid/structure interaction problem. The new computational scheme is applied to the solution of inviscid two-dimensional panel flutter problems for subsonic and supersonic Mach numbers. Supersonic results are shown to be consistent with the work of previous researchers. Multiple solutions at subsonic Mach numbers are discussed. Viscous effects are shown to raise the flutter dynamic pressure for the supersonic case. For the subsonic viscous case, a different type of flutter behavior occurs for the downward deflected solution with oscillations occurring about a mean deflected position of the panel. This flutter phenomenon results from a true fluid/structure interaction between the flexible panel and the viscous flow above the surface. Initial computations have also been performed for inviscid, 3-D panel flutter for both supersonic and subsonic Mach numbers.  相似文献   

19.
The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.  相似文献   

20.
This paper presents an aeroacoustic hybrid technique for the study of non‐isothermal flows at low Mach number. The flow dynamics and the acoustic production and propagation are computed separately. The fully compressible Navier–Stokes equations are modified through an expansion of the physical quantities using a low Mach number approximation. Compressibility effects are thus removed in the CFD while inhomogeneities of the flow related to heat transfer are preserved. One advantage is a reduction of the time step constraint. Another advantage is that the Mach number does not appear explicitly and a simple rescaling allows a study over a relatively wide band of subsonic Mach number flows with a single dynamic simulation. Compatible acoustic source terms for LEE based propagation have been defined and the procedure is implemented in the case of a temporal mixing layer. Compressible simulations for Mach numbers of 0.2, 0.3 and 0.4 are compared with the numerical results obtained using the proposed method. Very good agreement is obtained even at relatively high subsonic Mach number demonstrating the efficiency of the proposed technique. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号