首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Computational Modeling of Fluid Flow through a Fracture in Permeable Rock   总被引:3,自引:0,他引:3  
Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting friction-factor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.  相似文献   

4.
Mathematical modelling of flow through consolidated isotropic porous media   总被引:1,自引:0,他引:1  
A new mathematical model is proposed for time-independent laminar flow through a rigid isotropic and consolidated porous medium of spatially varying porosity. The model is based upon volumetric averaging concepts. Explicit assumptions regarding the mean geometric properties of the porous microstructure lead to a relationship between tortuosity and porosity. Microscopic inertial effects are introduced through consideration of flow development within the pores. A momentum transport equation is derived in terms of the fluid properties, the porous medium porosity and a characteristic length of the microstructure. In the limiting cases of porosity unity and zero, the model yields the required Navier-Stokes equation for free flow and no flow in a solid, respectively.  相似文献   

5.
Most of the developed models for fractured reservoirs assume ideal matrix block size distribution. This assumption may not be valid in reality for naturally fractured reservoirs and possibly lead to errors in prediction of production from the naturally fractured reservoirs especially during a transient period or early time production from the matrix blocks. In this study, we investigate the effect of variable block size distribution on one- dimensional flow of compressible fluids in fractured reservoirs. The effect of different matrix block size distributions on the single phase matrix-fracture transfer is studied using a recently developed semi-analytical approach. The proposed model is able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions using probability density functions or structural information of a fractured formation. The presented semi-analytical model demonstrates a good accuracy compared to the numerical results. There have been recent attempts to consider the effect of variable block size distribution in naturally fractured reservoir modeling for slightly compressible fluids with a constant viscosity and compressibility. The main objective of this study is to consider the effect of variable block size distribution on a one-dimensional matrix-fracture transfer function for single-phase flow of a compressible fluid in fractured porous media. In the proposed semi-analytical model, the pressure variability of viscosity and isothermal compressibility is considered by solving the nonlinear partial differential equation of compressible fluid flow in the fractured media. The closed form solution provided can be applied to flow of compressible fluids with variable matrix block size distribution in naturally fractured gas reservoirs.  相似文献   

6.
Although a lot of research has been done in modeling the oil recovery from fractured reservoirs by countercurrent imbibition, less attention has been paid to the effect of the fracture fluid velocity upon the rate of oil recovery. Experiments are conducted to determine the effect of fracture flow rate upon countercurrent imbibition. A droplet detachment model is proposed to derive the effective water saturation in a thin boundary layer at the matrix–fracture interface. This effective boundary water saturation is a function of fluid properties, fluid velocity in the fracture and fracture width. For a highly water–wet porous medium, this model predicts an increase in the boundary water saturation with increase in fracture fluid velocity. The increase in boundary water saturation, in turn, increases the oil recovery rate from the matrix, which is consistent with the experimental results. The model also predicts that the oil recovery rate does not vary linearly with the boundary water saturation.  相似文献   

7.
Fractures and faults are common features of many well-known reservoirs. They create traps, serve as conduits to oil and gas migration, and can behave as barriers or baffles to fluid flow. Naturally fractured reservoirs consist of fractures in igneous, metamorphic, sedimentary rocks (matrix), and formations. In most sedimentary formations both fractures and matrix contribute to flow and storage, but in igneous and metamorphic rocks only fractures contribute to flow and storage, and the matrix has almost zero permeability and porosity. In this study, we present a mesh-free semianalytical solution for pressure transient behavior in a 2D infinite reservoir containing a network of discrete and/or connected finite- and infinite-conductivity fractures. The proposed solution methodology is based on an analytical-element method and thus can be easily extended to incorporate other reservoir features such as sealing or leaky faults, domains with altered petrophysical properties (for example, fluid permeability or reservoir porosity), and complicated reservoir boundaries. It is shown that the pressure behavior of discretely fractured reservoirs is considerably different from the well-known Warren and Root dual-porosity reservoir model behavior. The pressure behavior of discretely fractured reservoirs shows many different flow regimes depending on fracture distribution, its intensity and conductivity. In some cases, they also exhibit a dual-porosity reservoir model behavior.  相似文献   

8.
Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials are the pore-fracture double-medium, and porous medium has no damage occurring, while fracture medium has damage occurring with load. To the implicit equation of the model, iterative method was adopted to obtain the complete stress-strain curve of the material. The result shows that many different distributions (uniform distribution, concentrated distribution and random distribution) of fractures in rock and soil material are the essential reasons of the daedal constitutive relations. By the reason that the double-medium constitutive model separates the material to be porous medium part, which is the main body of elasticity, and fracture medium part, which is the main body of damage, it is of important practical values and theoretical meanings to the study on failure of rock and soil or materials containing damage.  相似文献   

9.
李琪  王兆宇  胡鹏飞 《力学学报》2022,54(11):2994-3009
基于Brinkman-extended Darcy模型和局部热平衡模型,对多层平行裂隙型多孔介质通道内的流动传热特性进行研究.获得了多层平行裂隙型多孔介质通道内各区域的速度场、温度场、摩擦系数及努塞尔数解析解,并分析了裂隙层数、达西数、空心率、有效热导率之比等对通道内流动传热特性的影响.结果表明:达西数较小时,通道多孔介质层内会出现不随高度变化的达西速度,此达西速度会随裂隙层数的增加而增大,但却不受各裂隙层下多孔介质层位置变化的影响.增加裂隙层数会减弱空心率对压降的影响,会使通道内流体压降升高,但升高程度会逐渐降低.增大热导率之比或减小空心率会使多裂隙通道内出现阶梯式温度分布,而在较小热导率之比或较大空心率时多裂隙情况下的温度分布曲线会趋于一致.此外,当热导率之比较小时,多层裂隙通道内的传热效果在任何空心率下都要优于单裂隙情况,当热导率之比较大时,存在临界空心率使各裂隙层数通道内的传热效果相同,且多裂隙通道内继续增加裂隙层数对传热强度影响不大.  相似文献   

10.
The problem of fully developed forced convection in a parallel-plates channel filled with a saturated porous medium (involving a Brinkman model for the momentum equation), with the effect of viscous dissipation (involving a Brinkman number), is discussed. Some general matters relating to the possibility of fully developed convection are also discussed.  相似文献   

11.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of both horizontal and vertical hydrodynamic, thermal and solutal heterogeneity, on the onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, are studied analytically using linear stability theory for the case of weak heterogeneity. The Brinkman model is employed. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent.  相似文献   

13.
The model of Snow, in which a fracture is represented by two parallel channel walls, has frequently been used to study the flow of fluid in fractured reservoirs. Although this model gives important insight into the flow in fractures, very few naturally occurring fractures have smooth parallel faces. In this paper, a simple model of partially contacting and en-echelon fractures frequently found in geological materials is presented. In this model, a fracture is viewed as a planar region where separation and contact zones both exist. To analyse the fluid flow in a porous medium containing fractures of this type, a planar array of periodically spaced fracture segments is analysed. The flow through a single fracture is deduced by taking the limit as the spacing between neighbouring fractures becomes large. The hydraulic conductivity parallel to the fractures is found to be the parallel combination of the conductivity of the porous matrix and the system of parallel fractures, the individual fracture conductance being a series combination of the hydraulic conductance of the separation and contact zones. This interpretation enables the conductance of the contact zones to be evaluated and the results to be generalised to the case in which the material in the contact regions has a hydraulic conductivity different to that of the matrix. This may arise, for example, from grain-size reduction during fracturing or may result from a partial mineralisation or cementation of the fracture.  相似文献   

14.
Despite the widespread use of the Darcy equation to model porous flow, it is well known that this equation is inconsistent with commonly prescribed no slip conditions at flow domain walls or interfaces between different sections. Therefore, in cases where the wall effects on the flow regime are expected to be significant, the Darcy equation which is only consistent with perfect slip at solid boundaries, cannot predict velocity and pressure profiles properly and alternative models such as the Brinkman equation need to be considered. This paper is devoted to the study of the flow of a Newtonian fluid in a porous medium between two impermeable parallel walls at different Darcy parameters (Da). The flow regime is considered to be isothermal and steady. Three different flow regimes can be considered using the Brinkman equation: free flow (Da > 1), porous flow (high permeability, 1 > Da > 10−6) and porous flow (low permeability Da < 10−6). In the present work the described bench mark problem is used to study the effects of solid walls for a range of low to high Darcy parameters. Both no-slip and slip conditions are considered and the results of these two cases are compared. The range of the applicability of the Brinkman equation and simulated results for different cases are shown.  相似文献   

15.
In this study, we develop a non-primitive boundary integral equation (BIE) method for steady two-dimensional flows of an incompressible Newtonian fluids through porous medium. We assume that the porous medium is isotropic and homogeneous, and use Brinkman equation to model the fluid flow. First, we present BIE method for 2D Brinkman equation in terms of the non-primitive variables namely, stream-function and vorticity variables. Subsequently, a test problem namely, the lid-driven porous cavity over a unit square domain is presented to assert the accuracy of our BEM code. Finally, we discuss an application of our proposed method to flows through porous wavy channel, which is a problem of significant interest in the micro-fluidics, biological domains and groundwater flows. We observe that the rate of convergence (\(R_{c}\)) increases with increasing Darcy number. For low Darcy number streamlines follow the curvature of the wavy-walled channel and no circulation occurs irrespective of the wave–amplitude, while for high Darcy number the flow circulation occurs near the crest of the wavy-walled channel, when the wave–amplitude is large enough.  相似文献   

16.
A solution to the problem of shallow laminar water flow above a porous surface is essential when modeling phenomena such as erosion, resuspension, and mass transfer between the porous media and the flow above it. Previous studies proposed theoretical, experimental, and numerical insight with no single general solution to the problem. Many studies have used the Brinkman equation, while others showed that it does not represent the actual interface flow conditions. In this paper we show that the interface macroscopic velocity can be accurately modeled by introducing a modification to the Brinkman equation. A moving average approach was proved to be successful when choosing the correct representative elementary volume and comparing the macroscopic solution with the average microscopic flow. As the size of the representative elementary volume was found to be equal to the product of the square root of the permeability and an exponential function of the porosity, a general solution is now available for any brush configuration. Given the properties of the porous media (porosity and permeability), the flow height and its driving force, a complete macroscopic solution of the interface flow is obtained.  相似文献   

17.
A generalization of the Navier-Stokes equation is developed to include laminar flow through a rigid isotropic granular porous medium of spatially varying permeability. The model is based on a theory of interspersed continua and the mean geometrical properties of an idealized granular porous microstructure. The derived momentum transport equations are applicable to granular porous media over the entire porosity range from zero through unity. No restriction with respect to flow velocity is imposed, except for the assumption of laminar flow within the pores. The results provide useful and versatile equations and substantiate many of the empirical equations currently in use. One of the major advantages of the generalized momentum equation is its adaptability to numerical simulation.  相似文献   

18.
A mathematical model for hydraulic fracturing is proposed. The model is based on the presentation of the fractured portion of the stratum adjacent to the well as a heterogeneous fractured porous medium. Assumptions usually used in the theory of elastic flow are applied. Formulas for determining the size of the hydraulic fracturing zone and the degree of fracture opening under conditions of relative equilibrium are derived.  相似文献   

19.
The prediction of the free-surface seepage flow behavior in fractured rock mass is of significance in geotechnical engineering. There are two major issues in solving the seepage flow in complicated fractured rock mass based on the fractured porous medium (FPM) flow model, in which groundwater is assumed to flow simultaneously in both rock matrix and embedded fractures: One is the mesh generation of rock mass in the presence of the fracture network, especially when there exist a large number of stochastic fractures; the other is that a robust iteration algorithm is required since the free surface is unknown at the beginning of solution. Aiming at these two issues, this paper proposes a novel numerical method by coupling radial point interpolation method (RPIM) and finite element method (FEM), in which RPIM is utilized to model the rock matrix and FEM is utilized to model the fractures. On the basis of the variational inequality (VI) theory for free-surface seepage analysis, the computation formulations of the numerical method are derived and the corresponding computation program is developed. Three examples are solved with the present method. It is found that the VI theory can be extended to solve the free-surface seepage problem based on the FPM flow model. A crucial advantage of the present method is that the mesh generation can be greatly simplified. The present method has been verified to be a robust, efficient and reliable method for modeling the groundwater flow in complicated fractured rock mass.  相似文献   

20.
We present a new application of continuous time random walks (CTRW) methods to model fluid flows in fractured rocks. The proposed method allows large scale equivalent permeability tensors and matrix/fractures exchange function to be computed from high resolution maps of fractured porous media. Knowing these parameters allows us to carry out large scale simulations of flows governed by the dual porosity equations of Warren and Root. A direct connection between the exchange function and the time correlation function of the presence in the fractures of a particle undergoing a suitable Brownian motion over the whole medium is derived. This connection allows us to develop an efficient numerical method to compute the transient exchange term within the complete range of time scales of interest. It also gives an alternative probabilistic interpretation of the Warren and Root model. For the sake of simplicity, in the present paper, the method will only be developed to Cartesian structured grids, although it can be adapted for unstructured grids highly suited to describing complex fracture networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号