首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles.  相似文献   

2.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
悬浮颗粒运动的格子Boltzmann数值模拟   总被引:7,自引:0,他引:7  
吴锤结  周菊光 《力学学报》2004,36(2):151-162
将固体颗粒的牛顿力学和格子Boltzmann方法相结合,研究不规则形状悬浮颗粒在流场中的运动。通过受力分析,精确求得其所受合力、合力矩、合力作用中心等。提出了跟随颗粒运动的动网格计算域技术和模拟悬浮颗粒转动运动的局部数组方法及Euler-Lagrange两套坐标技术。通过对椭圆颗粒运动的数值模拟和对照他人对矩形颗粒的研究,分析了其复杂运动规律,并提供了合理的物理解释。结果表明:运用格子Boltzmann方法和上述特殊技术可以得到与有限元方法相同的模拟精度,且具有计算速度快、对复杂形状边界处理方便灵活、程序简单及特别适合大规模并行计算等优点。  相似文献   

5.
The lattice‐Boltzmann (LB) method, derived from lattice gas automata, is a relatively new technique for studying transport problems. The LB method is investigated for its accuracy to study fluid dynamics and dispersion problems. Two problems of relevance to flow and dispersion in porous media are addressed: (i) Poiseuille flow between parallel plates (which is analogous to flow in pore throats in two‐dimensional porous networks), and (ii) flow through an expansion–contraction geometry (which is analogous to flow in pore bodies in two‐dimensional porous networks). The results obtained from the LB simulations are compared with analytical solutions when available, and with solutions obtained from a finite element code (FIDAP) when analytical results are not available. Excellent agreement is found between the LB results and the analytical/FIDAP solutions in most cases, indicating the utility of the lattice‐Boltzmann method for solving fluid dynamics and dispersion problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
为了探讨不同壁面的绕流特性,针对粘性流场中,不同壁面诱导的涡脱落现象以及升阻力系数等流场特性进行了格子Boltzmann数值研究。利用基于分子动理论的格子Boltzmann方法(LBM)求解Navier-Stokes方程,实现对流体运动的描述,针对不同的壁面条件,分别采用不同的格子Boltzmann流-固壁面处理方法。采用Half-way反弹边界条件来处理平直壁面,而曲壁面则采用LBM与有限差分法相结合的形式进行处理,计入了壁面与标准网格不重合对结果造成的影响。开发相应的计算程序,计算结果与已发表文献结果吻合良好,验证了数值模型的正确性。同时,探讨了进出口边界与钝体中心的距离对结果的影响。对比分析了不同壁面的绕流模型中升阻力系数、斯托罗哈数和涡量云图等,并进一步研究了雷诺数条件的影响。结果表明,不同壁面的绕流特性具有明显差异,且同时受雷诺数的显著影响;一般地,平直壁面对于来流作出的响应更迅速。  相似文献   

7.
介绍Euler-Lagrange框架下基于格子Boltzmann方法LBM (Lattice Boltzmann Method)发展的两种不同层次(即不同时-空尺度和精度)的颗粒流体系统离散模拟方法,即格子Boltzmann颗粒解析直接数值模拟(LB-based PR-DNS)方法和格子Boltzmann离散颗粒模拟(LB-based DPS)方法,总结了Euler-Euler框架下基于格子Boltzmann双流体模型(LB-based TFM)方面的探索研究。LB-based PR-DNS方法中颗粒尺寸远大于格子步长,能够直接解析出流体在颗粒表面的流动以及颗粒所受完整的动力学信息;LB-based DPS方法中格子步长远大于颗粒直径,其在计算精度、时间耗费和计算效率之间能达到很好的平衡,可获得流体的宏观平均流动及颗粒的运动轨迹信息。LB-based DNS和DPS是探索颗粒流体系统的有力手段,但LB-based TFM应用于模拟颗粒流体系统仍需进一步探索。  相似文献   

8.
A fibrous filter is one of the most common systems used to separate suspended particles from air.Two important factors(i.e.,the pressure drop and capture efficiency) are usually used to evaluate the performance of this type of filter.This study considers three two-dimensional arrangements of fibers(parallel,staggered,and random) to geometrically model fibrous media.The lattice Boltzmann method is employed to numerically simulate fluid flow through the filter.The Lagrangian form of the equation of motion of a particle is numerically solved to track the path of each particle in the flow field,where a one-way interaction between the fluid and particles is considered.The effects of pertinent parameters such as the fiber arrangement,solid volume fraction,particle-to-fiber diameter ratio,particle-to-fluid density ratio,Reynolds number,Stokes number,and size of the fibrous medium on the pressure drop and capture efficiency are studied.The obtained results are compared with existing empirical and theoretical findings and discussed.  相似文献   

9.
This paper presents lattice Boltzmann Bhatnagar–Gross–Krook (LBGK) model and incompressible LBGK model‐based lattice Boltzmann flux solvers (LBFS) for simulation of incompressible flows. LBFS applies the finite volume method to directly discretize the governing differential equations recovered by lattice Boltzmann equations. The fluxes of LBFS at each cell interface are evaluated by local reconstruction of lattice Boltzmann solution. Because LBFS is applied locally at each cell interface independently, it removes the major drawbacks of conventional lattice Boltzmann method such as lattice uniformity, coupling between mesh spacing, and time interval. With LBGK and incompressible LBGK models, LBFS are examined by simulating decaying vortex flow, polar cavity flow, plane Poiseuille flow, Womersley flow, and double shear flows. The obtained numerical results show that both the LBGK and incompressible LBGK‐based LBFS have the second order of accuracy and high computational efficiency on nonuniform grids. Furthermore, LBFS with both LBGK models are also stable for the double shear flows at a high Reynolds number of 105. However, for the pressure‐driven plane Poiseuille flow, when the pressure gradient is increased, the relative error associated with LBGK model grows faster than that associated with incompressible LBGK model. It seems that the incompressible LBGK‐based LBFS is more suitable for simulating incompressible flows with large pressure gradients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A detailed comparison between the lattice Boltzmann method and the finite element method is presented for an incompressible steady laminar flow and heat transfer of a power-law fluid past a square cylinder between two parallel plates. Computations are performed for three different blockage ratios (ratios of the square side length to the channel width) and different values of the power-law index n covering both pseudo-plastic fluids (n < 1) and dilatant fluids (n > 1). The methodology is validated against the exact solution. The local and averaged Nusselt numbers are also presented. The results show that the relatively simple lattice Boltzmann method is a good alternative to the finite element method for analyzing non-Newtonian fluids.  相似文献   

11.
The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman- Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu- late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param- eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10-4) and the porosity of porous walls is up to 0.4.  相似文献   

12.
As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the computational fluid dynamics community. Unlike those reported computational studies that were conducted using more conventional numerical methods, this paper features employing the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to numerically investigate the two-dimensional cavity flows generated by the movements of two adjacent lids. The obtained MRT-LBM results reveal a number of important bifurcation flow features, such as the symmetry and steadiness of cavity flows at low Reynolds numbers, the multiplicity of stable cavity flow patterns when the Reynolds number exceeds its first critical value, as well as the periodicity of the cavity flow after the second critical Reynolds number is reached. Detailed flow characteristics are reported that include the critical Reynolds numbers, the locations of the vortex centers, and the values of stream function at the vortex centers. Through systematic comparison against the simulation results obtained elsewhere by using the lattice Bhatnagar–Gross–Krook model and other numerical schemes, not only does the MRT-LBM approach exhibit fairly satisfactory accuracy, but also demonstrates its remarkable flexibility that renders the adjustment of its multiple relaxation factors fully manageable and, thus, particularly accommodates the need of effectively investigating the multiplicity of flow patterns with complex behaviors.  相似文献   

13.
We present here a lattice Boltzmann model with high Reynolds number in the presence of external force fields to describe electrokinetic phenomena in microfluidics, by considering pressure as the only external force for liquid flow. Our results from a 9-bit square lattice Boltzmann model are in excellent agreement with experimental data in pressure-driven microchannel flow that could not be fully described by electrokinetic theory. The difference between the predicted and experimental Reynolds numbers from pressure gradients are well within 5%. Our results suggest that the lattice Boltzmann model described here is an effective computational tool to predict the more complex microfluidic systems that might be problematic using conventional methods.  相似文献   

14.
A method for direct numerical analysis of three‐dimensional deformable particles suspended in fluid is presented. The flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method (LBM), where each solid particle is mapped onto a Lagrangian frame moving continuously through the domain. Instead of the bounce‐back method, an external boundary force (EBF) is used to impose the no‐slip boundary condition at the fluid–solid interface for stationary or moving boundaries. The EBF is added directly to the lattice Boltzmann equation. The motion and orientation of the particles are obtained from Newtonian dynamics equations. The advantage of this approach is outlined in comparison with the standard and higher‐order interpolated bounce‐back methods as well as the LBM immersed‐boundary and the volume‐of‐fluid methods. Although the EBF method is general, in this application, it is used in conjunction with the lattice–spring model for deformable particles. The methodology is validated by comparing with experimental and theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
基于插值补充格子波尔兹曼方法和幂律流体的本构方程,建立了贴体坐标系下适用于幂律流体的格子波尔兹曼模型,模拟了幂律流体的圆柱绕流问题,采用非平衡外推格式处理圆柱表面的速度无滑移边界,利用应力积分法确定曳力系数和升力系数,并与基于标准的格子波尔兹曼方法和有限容积法获得的数值数据进行对比,吻合良好. 进行了网格无关性验证之后,分析了稳态流动时,不同雷诺数下幂律指数对于尾迹长度、分离角、圆柱表面黏度分布、表面压力系数及曳力系数的影响,以及非定常流动中,幂律指数对于流场、曳力系数、升力系数和斯特劳哈尔数的影响. 获得的变化规律与基于其他数值模拟方法得到的结果相一致,充分验证了模型的有效性和正确性. 结果表明:插值补充格子波尔兹曼方法可以用来模拟幂律流体在具有复杂边界流场内的流动问题,通过引入不同的非牛顿流体本构方程,该方法还可以进一步应用于其他类型的非牛顿流体研究中.  相似文献   

16.
基于插值补充格子波尔兹曼方法和幂律流体的本构方程,建立了贴体坐标系下适用于幂律流体的格子波尔兹曼模型,模拟了幂律流体的圆柱绕流问题,采用非平衡外推格式处理圆柱表面的速度无滑移边界,利用应力积分法确定曳力系数和升力系数,并与基于标准的格子波尔兹曼方法和有限容积法获得的数值数据进行对比,吻合良好. 进行了网格无关性验证之后,分析了稳态流动时,不同雷诺数下幂律指数对于尾迹长度、分离角、圆柱表面黏度分布、表面压力系数及曳力系数的影响,以及非定常流动中,幂律指数对于流场、曳力系数、升力系数和斯特劳哈尔数的影响. 获得的变化规律与基于其他数值模拟方法得到的结果相一致,充分验证了模型的有效性和正确性. 结果表明:插值补充格子波尔兹曼方法可以用来模拟幂律流体在具有复杂边界流场内的流动问题,通过引入不同的非牛顿流体本构方程,该方法还可以进一步应用于其他类型的非牛顿流体研究中.   相似文献   

17.
A lattice Boltzmann model with higher‐order accuracy for the wave motion is proposed. The new model is based on the technique of the higher‐order moment of equilibrium distribution functions and a series of lattice Boltzmann equations in different time scales. The forms of moments are derived from the binary wave equation by designing the higher‐order dissipation and dispersion terms. The numerical results agree well with classical ones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The lattice Boltzmann (LB) method is used to study the hydrodynamic force and torque acting on a sphere held stationary between parallel plates in pressure‐driven flow. This and associated flow configurations are explored in this paper. LB results are in excellent agreement with existing theory and numerical results for simple pressure‐driven flow between parallel plates, for flow through a periodic medium of spheres [Zick AA, Homsy GM. Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics 1982; 115: 13], and for the force and torque acting on a sphere held fixed at the quarter vertical position in a pressure‐driven flow between parallel plates. In the latter case, LB calculations reveal a screening effect caused by neighboring periodic images of the test sphere. It is shown that the test sphere is hydrodynamically decoupled from its periodic images when separated by approximately 30 sphere radii. LB results for force and torque as a function of sphere height and flow cell height are also reported. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This article presents the lattice Boltzmann simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media. Such phenomenon generally takes place when a less viscous fluid is used to displace a more viscous fluid, and it can be found in many industrial fields. Dimensionless quantities, such as capillary number, Bond number and viscosity ratio between displaced fluid and displacing fluid are introduced to illustrate the effects of capillary force, viscous force, and gravity on the fluid behaviour. The surface wettability, which has an impact on the finger pattern, is also considered in the simulation. The numerical procedure is validated against the experiment about viscous fingering in a Hele-Shaw cell. The displacement efficiency is investigated using the parameter, areal sweep efficiency. The present simulation shows an additional evidence to demonstrate that the lattice Boltzmann method is a useful method for simulating some multiphase flow problems in porous media.  相似文献   

20.
Natural convection heat transfer in a square cavity induced by heated electronic board (as a thin plate at constant temperature) is investigated using the lattice Boltzmann method. Lattice Boltzmann simulation of natural convective heat transfer in a cavity in the presence of internal straight obstacle has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The present work is an extension to our previous paper (see Nazari and Ramzani in Modares. Mech. Eng. 11(2):119–133, 2011) in which the effects of position and dimensions of obstacle on the flow pattern and heat transfer rate are completely studied. A suitable forcing term is represented in the Boltzmann equation. With the representation, the Navier–Stokes equation can be derived from the lattice Boltzmann equation through the Chapman-Enskog expansion. Top and bottom of the cavity are adiabatic; the two vertical walls of the cavity have constant temperatures lower than the plate’s temperature. The study is performed for different values of Grashof number ranging from 103 to 105 for different aspect ratios and position of heated plate. The effect of the position and aspect ratio of heated plate on heat transfer are discussed and the position of the obstacle in which the maximum rate of heat transfer is investigated in both vertical and horizontal situation. The obtained results of the lattice Boltzmann method are validated with those presented in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号