首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. When the predictors have a natural group structure, such as in the case of categorical predictors converted into dummy variables, then a group lasso penalty is used in regularized methods. In this paper, we present a Bayesian Gibbs sampling procedure to estimate the parameters of a quantile regression model under a group lasso penalty for classification problems with a binary response. Simulated and real data show a good performance of the proposed method in comparison to mean-based approaches and to quantile-based approaches which do not exploit the group structure of the predictors.  相似文献   

2.
The statistics literature of the past 15 years has established many favorable properties for sparse diminishing-bias regularization: techniques that can roughly be understood as providing estimation under penalty functions spanning the range of concavity between ?0 and ?1 norms. However, lasso ?1-regularized estimation remains the standard tool for industrial Big Data applications because of its minimal computational cost and the presence of easy-to-apply rules for penalty selection. In response, this article proposes a simple new algorithm framework that requires no more computation than a lasso path: the path of one-step estimators (POSE) does ?1 penalized regression estimation on a grid of decreasing penalties, but adapts coefficient-specific weights to decrease as a function of the coefficient estimated in the previous path step. This provides sparse diminishing-bias regularization at no extra cost over the fastest lasso algorithms. Moreover, our gamma lasso implementation of POSE is accompanied by a reliable heuristic for the fit degrees of freedom, so that standard information criteria can be applied in penalty selection. We also provide novel results on the distance between weighted-?1 and ?0 penalized predictors; this allows us to build intuition about POSE and other diminishing-bias regularization schemes. The methods and results are illustrated in extensive simulations and in application of logistic regression to evaluating the performance of hockey players. Supplementary materials for this article are available online.  相似文献   

3.
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l 1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online.  相似文献   

4.
Selecting important features in nonlinear kernel spaces is a difficult challenge in both classification and regression problems. This article proposes to achieve feature selection by optimizing a simple criterion: a feature-regularized loss function. Features within the kernel are weighted, and a lasso penalty is placed on these weights to encourage sparsity. This feature-regularized loss function is minimized by estimating the weights in conjunction with the coefficients of the original classification or regression problem, thereby automatically procuring a subset of important features. The algorithm, KerNel Iterative Feature Extraction (KNIFE), is applicable to a wide variety of kernels and high-dimensional kernel problems. In addition, a modification of KNIFE gives a computationally attractive method for graphically depicting nonlinear relationships between features by estimating their feature weights over a range of regularization parameters. The utility of KNIFE in selecting features through simulations and examples for both kernel regression and support vector machines is demonstrated. Feature path realizations also give graphical representations of important features and the nonlinear relationships among variables. Supplementary materials with computer code and an appendix on convergence analysis are available online.  相似文献   

5.
We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH, hierNet, the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence dataset. Supplementary materials for this article are available online.  相似文献   

6.
何晓霞  徐伟  李缓  吴传菊 《数学杂志》2017,37(5):1101-1110
本文研究了基于面板数据的分位数回归模型的变量选择问题.通过增加改进的自适应Lasso惩罚项,同时实现了固定效应面板数据的分位数回归和变量选择,得到了模型中参数的选择相合性和渐近正态性.随机模拟验证了该方法的有效性.推广了文献[14]的结论.  相似文献   

7.
The adaptive lasso is a model selection method shown to be both consistent in variable selection and asymptotically normal in coefficient estimation. The actual variable selection performance of the adaptive lasso depends on the weight used. It turns out that the weight assignment using the OLS estimate (OLS-adaptive lasso) can result in very poor performance when collinearity of the model matrix is a concern. To achieve better variable selection results, we take into account the standard errors of the OLS estimate for weight calculation, and propose two different versions of the adaptive lasso denoted by SEA-lasso and NSEA-lasso. We show through numerical studies that when the predictors are highly correlated, SEA-lasso and NSEA-lasso can outperform OLS-adaptive lasso under a variety of linear regression settings while maintaining the same theoretical properties of the adaptive lasso.  相似文献   

8.
We compare alternative computing strategies for solving the constrained lasso problem. As its name suggests, the constrained lasso extends the widely used lasso to handle linear constraints, which allow the user to incorporate prior information into the model. In addition to quadratic programming, we employ the alternating direction method of multipliers (ADMM) and also derive an efficient solution path algorithm. Through both simulations and benchmark data examples, we compare the different algorithms and provide practical recommendations in terms of efficiency and accuracy for various sizes of data. We also show that, for an arbitrary penalty matrix, the generalized lasso can be transformed to a constrained lasso, while the converse is not true. Thus, our methods can also be used for estimating a generalized lasso, which has wide-ranging applications. Code for implementing the algorithms is freely available in both the Matlab toolbox SparseReg and the Julia package ConstrainedLasso. Supplementary materials for this article are available online.  相似文献   

9.
We propose a new binary classification and variable selection technique especially designed for high-dimensional predictors. Among many predictors, typically, only a small fraction of them have significant impact on prediction. In such a situation, more interpretable models with better prediction accuracy can be obtained by variable selection along with classification. By adding an ?1-type penalty to the loss function, common classification methods such as logistic regression or support vector machines (SVM) can perform variable selection. Existing penalized SVM methods all attempt to jointly solve all the parameters involved in the penalization problem altogether. When data dimension is very high, the joint optimization problem is very complex and involves a lot of memory allocation. In this article, we propose a new penalized forward search technique that can reduce high-dimensional optimization problems to one-dimensional optimization by iterating the selection steps. The new algorithm can be regarded as a forward selection version of the penalized SVM and its variants. The advantage of optimizing in one dimension is that the location of the optimum solution can be obtained with intelligent search by exploiting convexity and a piecewise linear or quadratic structure of the criterion function. In each step, the predictor that is most able to predict the outcome is chosen in the model. The search is then repeatedly used in an iterative fashion until convergence occurs. Comparison of our new classification rule with ?1-SVM and other common methods show very promising performance, in that the proposed method leads to much leaner models without compromising misclassification rates, particularly for high-dimensional predictors.  相似文献   

10.
Abstract

Bridge regression, a special family of penalized regressions of a penalty function Σ|βj|γ with γ ≤ 1, considered. A general approach to solve for the bridge estimator is developed. A new algorithm for the lasso (γ = 1) is obtained by studying the structure of the bridge estimators. The shrinkage parameter γ and the tuning parameter λ are selected via generalized cross-validation (GCV). Comparison between the bridge model (γ ≤ 1) and several other shrinkage models, namely the ordinary least squares regression (λ = 0), the lasso (γ = 1) and ridge regression (γ = 2), is made through a simulation study. It is shown that the bridge regression performs well compared to the lasso and ridge regression. These methods are demonstrated through an analysis of a prostate cancer data. Some computational advantages and limitations are discussed.  相似文献   

11.

We study the asymptotic properties of a new version of the Sparse Group Lasso estimator (SGL), called adaptive SGL. This new version includes two distinct regularization parameters, one for the Lasso penalty and one for the Group Lasso penalty, and we consider the adaptive version of this regularization, where both penalties are weighted by preliminary random coefficients. The asymptotic properties are established in a general framework, where the data are dependent and the loss function is convex. We prove that this estimator satisfies the oracle property: the sparsity-based estimator recovers the true underlying sparse model and is asymptotically normally distributed. We also study its asymptotic properties in a double-asymptotic framework, where the number of parameters diverges with the sample size. We show by simulations and on real data that the adaptive SGL outperforms other oracle-like methods in terms of estimation precision and variable selection.

  相似文献   

12.
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both lasso and adaptive lasso when and only when there are many nuisance variables in the model.  相似文献   

13.
A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This article introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. Supplementary materials for this article are available online.  相似文献   

14.
The Lasso is a very well-known penalized regression model, which adds an L1 penalty with parameter λ1 on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L1 penalty with parameter λ2 on the difference of neighboring coefficients, assuming there is a natural ordering. In this article, we develop a path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of λ1 and λ2. We also present an approximate algorithm that has considerable speed advantages for a moderate trade-off in accuracy. In the Online Supplement for this article, we provide proofs and further details for the methods developed in the article.  相似文献   

15.
While graphical models for continuous data (Gaussian graphical models) and discrete data (Ising models) have been extensively studied, there is little work on graphical models for datasets with both continuous and discrete variables (mixed data), which are common in many scientific applications. We propose a novel graphical model for mixed data, which is simple enough to be suitable for high-dimensional data, yet flexible enough to represent all possible graph structures. We develop a computationally efficient regression-based algorithm for fitting the model by focusing on the conditional log-likelihood of each variable given the rest. The parameters have a natural group structure, and sparsity in the fitted graph is attained by incorporating a group lasso penalty, approximated by a weighted lasso penalty for computational efficiency. We demonstrate the effectiveness of our method through an extensive simulation study and apply it to a music annotation dataset (CAL500), obtaining a sparse and interpretable graphical model relating the continuous features of the audio signal to binary variables such as genre, emotions, and usage associated with particular songs. While we focus on binary discrete variables for the main presentation, we also show that the proposed methodology can be easily extended to general discrete variables.  相似文献   

16.
One useful approach for fitting linear models with scalar outcomes and functional predictors involves transforming the functional data to wavelet domain and converting the data-fitting problem to a variable selection problem. Applying the LASSO procedure in this situation has been shown to be efficient and powerful. In this article, we explore two potential directions for improvements to this method: techniques for prescreening and methods for weighting the LASSO-type penalty. We consider several strategies for each of these directions which have never been investigated, either numerically or theoretically, in a functional linear regression context. We compare the finite-sample performance of the proposed methods through both simulations and real-data applications with both 1D signals and 2D image predictors. We also discuss asymptotic aspects. We show that applying these procedures can lead to improved estimation and prediction as well as better stability. Supplementary materials for this article are available online.  相似文献   

17.
In many problems involving generalized linear models, the covariates are subject to measurement error. When the number of covariates p exceeds the sample size n, regularized methods like the lasso or Dantzig selector are required. Several recent papers have studied methods which correct for measurement error in the lasso or Dantzig selector for linear models in the p > n setting. We study a correction for generalized linear models, based on Rosenbaum and Tsybakov’s matrix uncertainty selector. By not requiring an estimate of the measurement error covariance matrix, this generalized matrix uncertainty selector has a great practical advantage in problems involving high-dimensional data. We further derive an alternative method based on the lasso, and develop efficient algorithms for both methods. In our simulation studies of logistic and Poisson regression with measurement error, the proposed methods outperform the standard lasso and Dantzig selector with respect to covariate selection, by reducing the number of false positives considerably. We also consider classification of patients on the basis of gene expression data with noisy measurements. Supplementary materials for this article are available online.  相似文献   

18.
In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.  相似文献   

19.
In this paper we discuss variable selection in a class of single-index models in which we do not assume the error term as additive. Following the idea of sufficient dimension reduction, we first propose a unified method to recover the direction, then reformulate it under the least square framework. Differing from many other existing results associated with nonparametric smoothing methods for density function, the bandwidth selection in our proposed kernel function essentially has no impact on its root-n consistency or asymptotic normality. To select the important predictors, we suggest using the adaptive lasso method which is computationally efficient. Under some regularity conditions, the adaptive lasso method enjoys the oracle property in a general class of single-index models. In addition, the resulting estimation is shown to be asymptotically normal, which enables us to construct a confidence region for the estimated direction. The asymptotic results are augmented through comprehensive simulations, and illustrated by an analysis of air pollution data.  相似文献   

20.
An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a \(\ell _{1,\infty }\) -norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号