首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modification of a gallium arsenide surface during irradiation by heavy cesium ions Cs+ is investigated by measuring the surface height distribution with an atomic force microscope. Both increases and decreases in the rms height σ, an integral parameter of the surface, are observed to occur. It is established that for all experimental samples the roughness of the gallium arsenide surface increases in a 1–100 nm lateral range. Analysis of the structure function yields an estimate of the characteristic lateral dimensions of the surface structures arising during ion etching. Zh. Tekh. Fiz. 69, 107–111 (February 1999)  相似文献   

2.
H-terminated Si samples were preloaded with Cs by performing ToF-SIMS depth profiles (250 eV Cs+, 15 keV Ga+) until the steady state was reached both with and without a bias of +40 V applied to the ion extraction electrode. Xe+ depth profiles (350 eV Xe+, 15 keV Ga+) were obtained inside and around the Cs craters with and without applying the 40 V bias. The results indicate that the maximum of the Cs+ signal of the Xe+ depth profiles shifts to the surface if no bias is applied, either during the Cs+ sputtering or during the Xe+ sputtering (i.e., the profiles are broadest with both biases (Cs+ and Xe+) on and narrowest and closest to the surface if both biases are off). This effect can be explained by the electric field, caused by the bias, deflecting the sputtered low energy Cs+ ions back to the surface.  相似文献   

3.
A new method of stimulating secondary negative ion emission is suggested that is based on implantation of alkaline ions into the surface layer of a solid with subsequent heating to a temperature providing optimal coverage of the surface (about half a monolayer) by activator (alkaline) ions. It is shown that, by appropriately selecting the implantation dose (1018–1019 cm−3) and surface temperature (500–900°C), one can reach such a degree of coverage of the sample surface by activator ions that its work function eφ becomes minimal: 1.9 eV for molybdenum and 2.1 eV for copper. It is found that, with the implantation (irradiation) dose and surface temperature chosen properly, one can, by means of outdiffusion of cesium atoms, achieve such a degree of surface coverage that remains unchanged during the continuous sputtering of the surface by a cesium ion beam.  相似文献   

4.
We have studied the effect of bombardment by Cu+ and Ti+ ions with energy 30 keV on the optical absorption and luminescence of F centers in oxygen-deficient aluminum oxide. We have shown that in the induced optical absorption spectra there are six components of gaussian shape, which can be assigned to absorption bands of F+, F2, and F2+ centers. We have established that bombardment of the samples by ion beams has a weak effect on the thermoluminescence parameters in the 3.0 eV and 2.4 eV bands, while in the 3.8 eV luminescence band for F+ centers, the thermoluminescent response increases considerably. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 422–424, May–June, 2008.  相似文献   

5.
Microhydrated methylene blue cations, MB+(H2O) n , are produced in an electrospray ion source and their size-distributions are measured as a function of the source temperature. A series of MB+(H2O) n ions is observed up to n ≃ 60. A striking feature observed in the mass spectra is that the series of hydrated ions starts at n = 4; intensities of n = 1–3 are extremely suppressed. The absence of n = 1–3 ions is well explained by the energetics concerning evaporation processes of water molecules, based on stable structures and the binding energies of MB+(H2O) n ions calculated by DFT calculations up to n = 5. MB+(H2O) n ions for n > 4 evaporate a single water molecule sequentially, while MB+(H2O)4 tends to fragment into MB+ and (H2O)4 rather than MB+(H2O)3 and an H2O molecule. We have observed a clear magic peak at n = 24, which strongly suggests that the MB+(H2O)24 ion is formed by attaching a neutral (H2O)20 cage onto an MB+(H2O)4 ion.  相似文献   

6.
R.J.W.E. Lahaye 《Surface science》2010,604(13-14):1135-1142
This is a study into the scattering dynamics of the alkaline ions Cs+, K+, Na+, and Li+ from an ice surface, and the process of abstracting water molecules by the scattered ions to form ion–water clusters as a result of the ion–dipole attraction. In a classical molecular dynamics computer simulation a semi-empirical ion–water interaction potential and a modified version of the TIP3P ice model are employed.The thickness of the ice structure at the surface greatly affects the abstraction efficiency. From a thin ice overlayer all alkaline ions exhibit similar scattering probabilities, but Cs+ abstracts water molecules most efficiently; its lower speed facilitates a mechanism where the Cs+ in its outgoing trajectory pulls water molecules out of the ice structure. From a thick ice structure the scattering probabilities decrease dramatically due to an effective energy transfer to the ice structure. A more grazing angle of incidence reduces the energy transfer and enhances the scattering probabilities for the lighter alkaline ions. The deprived formation of ion–water clusters in the simulations confirms that from thick ice the cluster formation probability is reduced by at least three orders of magnitude.  相似文献   

7.
Trapped ion density distribution in the presence of He-buffer gas   总被引:1,自引:0,他引:1  
The spatial density distribution of Ba+ ions, confined in a rf quadrupole trap, has been measured by laser scanning across the trap. This allows to determine the ion temperature, assuming thermal equilibrium. Under UHV conditions the average ion energy has been found to be one tenth of the trap potential well depth. Collisions with He at pressures up to 5×10−6 mbar reduce the ion temperature by a factor of 3.  相似文献   

8.
《Surface science》1996,366(2):L719-L723
Cs+ ion beams are scattered from an Si(111) surface chemisorbed with water. Scattering of Cs+ ions from the surface at the incidence energies of 10–;15 eV gives rise to reaction products CsOH+, CsOH+2 and CsSiO+. We interpret that these cluster ions are formed by desorption of X (X = OH, H2O and SiO), followed by Cs+X association and energy quenching near the surface. The Cs+ scattering method has potential advantages for adsorbate detection over desorption techniques, in particular for identification of molecular and thermally unstable species.  相似文献   

9.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in tungsten samples for 1600 s at different temperatures. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The surface roughness variation with temperature generally showed a decrease with increasing temperature. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in W studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in W at certain temperatures, which are both consistent with XRD results (i.e., IW (2 0 0)/IW (2 1 1)) for W (bcc). Hence, showing a correlation between XRD and SIMS results.  相似文献   

10.
The need for a molecular depth profiling technique to study organic layers has become a strong incentive in the SIMS community in the last few years, especially with the recent successes obtained with cluster ion beam depth profiling. In this work, we have investigated a thoroughly different approach by using very low energy (down to 200 eV) monoatomic or diatomic ions to sputter organic matter. Quite surprisingly, we were able to retain specific molecular information on various polymers even at very high fluence.Polymethylmethacrylate (PMMA) and polyethylene terephthalate (PET) films were depth-profiled with 200 eV Cs+ and 500 eV O2+ ions. With 200 eV Cs ions, the best profiles were obtained in the negative mode, due to a strong negative ionisation yield enhancement related to Cs retention in the polymer. A relatively high and stable signal from the most characteristic ions was measured all over the layer.With 500 eV O2+, real molecular depth-profiles were also obtained in both the positive and the negative modes. Once again, the main characteristic fragments of PET or PMMA remain detectable with stable yields all over the profile.  相似文献   

11.
12.
Experimental studies on the damage produced in (100) Ge substrates by implantation of Ge+ ions at different energies (from 25 to 600 keV), fluences (from 2×1013 to 4×1014 cm−2) and temperature (room temperature, RT, or liquid-nitrogen temperature, LN2T) have been performed by using the Rutherford backscattering spectrometry technique. We demonstrated that the higher damage rate of Ge with respect to Si is due to both the high stopping power of germanium atoms and the low mobility of point defects within the collision cascades. The amorphization of Ge has been modeled by employing the critical damage energy density model in a large range of implantation energies and fluences both at RT and LN2T. The experimental results for implantation at LN2T were fitted using a critical damage energy density of ∼1 eV/atom. A fictitious value of ∼5 eV/atom was obtained for the samples implanted at RT, essentially because at RT the damage annihilation plays a non-negligible role against the crystalline–amorphous transition phase. The critical damage energy density model was found to stand also for other ions implanted in crystalline Ge (Ar+ and Ga+).  相似文献   

13.
The energy transferred to a copper surface by bombardment with Xe+, Ar+, and He+ ions with kinetic energies in the range 100–4000 eV has been studied by our group in previous experiments. There were significant experimental uncertainties for that data at energies below about 200 eV. The present investigation overlaps the previous work, extends the energy range to 10 eV, and includes data for Ne+. Particular emphasis is placed on the energy range below 200eV. A specially designed ion source was employed in these experiments. A polycrystalline copper film deposited onto a highly sensitive calorimeter was used as the target material. The results show that the Xe+ ion deposits more than 97% of its energy over the entire range investigated whereas the lighter ions deposit a decreasing fraction of their energy below about 1 keV. The decrease is largest for the lightest ion (He+). In all cases the deposited energy is about or more than 70% of the incident energy. It will be shown that the present results are in agreement with previous measurements for copper and are qualitatively in good agreement with computer calculations using the TRIM.SP code.On leave from: Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich GmbH, W-5170 Jülich, Fed. Rep. Germany  相似文献   

14.
We have studied reactive ion scattering (RIS) of hyperthermal (1–100 eV) Cs+ projectiles from physisorbed surfaces. RIS experiments from physisorbed water on Pt(1 1 1) reveal scattering products of Cs(H2O)n+ (n=1–3) cluster ions. The yields for RIS products are extremely high compared to those with chemisorbed species. Classical molecular dynamics simulations provide a new mechanism that explains the enhanced RIS yields with physisorbed species. Slow Cs+ projectiles pick up physisorbed molecules via an ion–surface abstraction reaction, preferably without direct collisions between projectile and adsorbate. This RIS process is very efficient and mechanistically different from the RIS process responsible for chemisorbed species that occurs through direct collision-induced desorption.  相似文献   

15.
Fused silica plates have been implanted with 40 keV Co+ or Ni+ ions to high doses in the range of (0.25–1.0) × 1017 ions/cm2, and magnetic properties of the implanted samples have been studied with ferromagnetic resonance (FMR) technique supplemented by transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. The high-dose implantation with 3d-ions results in the formation of cobalt and nickel metal nanoparticles in the irradiated subsurface layer of the SiO2 matrix. Co and Ni nanocrystals with hexagonal close packing and face-centered cubic structures have a spherical shape and the sizes of 4–5 nm (for cobalt) and 6–14 nm (for nickel) in diameter. Room-temperature FMR signals from ensembles of Co and Ni nanoparticles implanted in the SiO2 matrix exhibit an out-of-plane uniaxial magnetic anisotropy that is typical for thin magnetic films. The dose and temperature dependences of FMR spectra have been analyzed using the Kittel formalism, and the effective magnetization and g-factor values have been obtained for Co- and Ni-implanted samples. Nonsymmetric FMR line shapes have been fitted by a sum of two symmetrical curves. The dependences of the magnetic parameters of each curve on the implantation dose and temperature are presented.  相似文献   

16.
ZnS nanocrytsals of size ∼2.5 nm were prepared by chemical precipitation technique. Pressed pellets of nanostructured ZnS were implanted with He+ ions at doses of 5 × 1014, 1 × 1015 and 5 × 1015 ions/cm2. Raman spectra of both unimplanted and He+ ion implanted samples were recorded with ultraviolet (UV) excitation. LO, 2LO, 2TO, (LO + TA) and (2TO − TA) modes of ZnS were observed in the resonance Raman spectra of the unimplanted nanostructured ZnS samples. In addition, a surface mode was observed at 294 cm−1. With the implantation of He+ ions, the 2TO mode disappeared and 2LO mode became prominent and this observation was attributed to the decrease in band gap of ZnS nanocrytsals due to ion implantation. The exciton–LO phonon coupling strength was determined from the intensity ratio of 2LO to LO modes and it was observed that the exciton–LO phonon coupling strength increases with increase in implantation dose. In the present work, we report for the first time the observation of 2TO mode in the resonance Raman spectrum of nanostructured ZnS and also the modification of exciton–LO phonon coupling strength of semiconductor nanoparticles by ion implantation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study, we report the photoluminescence (PL) study of nanoparticles of ZnS implanted with Cu+ ions at the doses of 5×1014, 1×1015 and 5×1015 ions/cm2 and annealed at 200 and 300 °C. The photoluminescence spectra of the samples implanted at lower doses of 5×1014 and 1×1015 ions/cm2 and annealed at 200 and 300 °C showed peaks at around 406, 418 and 485 nm. The PL emission peak at 485 nm was attributed to the transition of electrons from conduction band of ZnS to the impurity level formed by the implanted Cu+ ions. In the PL spectrum of the sample implanted at the highest dose of 5×1015 ions/cm2, in addition to the emission peaks observed in the PL spectra of the samples implanted at lower doses, a peak at around 525 nm, the intensity of which decreased with increase in the annealing temperature, was observed. The emission peak at 525 nm was attributed to the transitions between sulfur and zinc vacancy levels. The full width at half maximum (FWHM) of the emission peak at 406 nm was observed to decrease with increase in annealing temperature, indicating lattice reconstruction. The observation of copper ion impurity related peak at 485 nm in the PL spectra of samples of the present study indicated that the doping of copper ions into the ZnS lattice is achievable by implanting Cu+ ions followed by annealing.  相似文献   

18.
In this paper, a H-terminated silicon wafer was bombarded by low energy cesium ions during ToF-SIMS analysis and work function variations of the target were measured for different analysis conditions. This measurement was performed by measuring the shift of the secondary ions energy distributions with a reflectron type analyzer. At first, the silicon’s work function change was found to be −2.3 eV during 500 eV Cs+ bombardment at 45°. This effect is due to the creation of a dipolar layer at the surface of the silicon by the implanted cesium. Then the work function variation was measured at 300 eV for varying cesium surface concentrations. The work function was found to decrease monotonously with the increasing cesium surface concentration, as during cesium adsorption experiments. The results were modeled following three different approaches and the value of the effective polarizability α of cesium was found to be equal to 1.9 × 10−39 C m2/V. Finally, the effect of the bombardment energy on the work function variation was studied for beams with energies ranging from 250 to 2000 eV. The effective polarizability of cesium was found to increase with increasing Cs beam energy.  相似文献   

19.
We have performed molecular dynamics simulations of alkali metal (Li+, Na+, K+, Rb+, Cs+) and halide (F, Cl, Br, I) ions in supercritical water at 673 K. The calculations were done for water at three different densities of 1.0, 0.7 and 0.35 g cm−3 to investigate the effects of solute size on the diffusion of ions in supercritical water. On increase of ion size, we observe a maximum for diffusion of ions in supercritical water of higher densities (1.0 and 0.7 g cm−3). However, no such maximum is found for ion diffusion in the supercritical water of low density (0.35 g cm−3) or for diffusion of neutral solutes at all densities. These results are analyzed in terms of passage through voids and necks present in supercritical water. Correlations of the observed diffusion behavior with the sizes of ions and voids present in the systems are discussed.  相似文献   

20.
Semiconductor nanoparticles (CdS) were fabricated by an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. Nano-CdS in PVA were subjected to ion irradiation (using oxygen, chlorine and gold) in the medium energy range (80–100 MeV) and under fluence variation of 1011–1013 ions/cm2. The nature of light emission was found to be drastically different in each of the three cases. Photoluminescence spectra of oxygen irradiated samples exhibit band edge emission (2.8 eV) as well as trap related emission (1.76 eV) whereas band edge emission is found to be bleached out for chlorine ion irradiated nano-CdS. The intense broad PL peaks, noticeable in the case of gold ion irradiated samples suggest superposition of the two peaks — namely, band edge emission and trap related emission. Furthermore, in the case of gold ion irradiated nano-CdS, energy shift in the PL spectra reveals variation in size distribution caused by the extra pressure effect of heavy gold ion beams. The mechanism of such a difference as a result of ion irradiation-type and ion-fluence is discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号