首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Fredericamycin (FDM) A, a pentadecaketide featuring two sets of peri-hydroxy tricyclic aromatic moieties connected through a unique chiral spiro carbon center, exhibits potent cytotoxicity and has been studied as a new type of anticancer drug lead because of its novel molecular architecture. The fdm gene cluster was localized to 33-kb DNA segment of Streptomyces griseus ATCC 49344, and its involvement in FDM A biosynthesis was proven by gene inactivation, complementation, and heterologous expression experiments. The fdm cluster consists of 28 open reading frames (ORFs), encoding a type II polyketide synthase (PKS) and tailoring enzymes as well as several regulatory and resistance proteins. The FDM PKS features a KSalpha subunit with heretofore unseen tandem cysteines at its active site, a KSbeta subunit that is distinct phylogenetically from KSbeta of hexa-, octa-, or decaketide PKSs, and a dedicated phosphopantetheinyl transferase. Further study of the FDM PKS could provide new insight into how a type II PKS controls chain length in aromatic polyketide biosynthesis. The availability of the fdm genes, in vivo characterization of the fdm cluster in S. griseus, and heterologous expression of the fdm cluster in Streptomyces albus set the stage to investigate FDM A biosynthesis and engineer the FDM biosynthetic machinery for the production of novel FDM A analogues.  相似文献   

2.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

3.
《Chemistry & biology》1997,4(10):757-766
Background: Modular polyketide synthases (PKSs) are large multifunctional proteins that catalyze the biosynthesis of structurally complex bioactive products. The modular organization of PKSs has allowed the application of a combinatorial approach to the synthesis of novel polyketides via the manipulation of these biocatalysts at the genetic level. The inherent specificity of PKSs for their natural substrates, however, may place limits on the spectrum of molecular diversity that can be achieved in polyketide products. With the aim of further understanding PKS specificity, as a route to exploiting PKSs in combinatorial synthesis, we chose to examine the substrate specificity of a single intact domain within a bimodular PKS to investigate its capacity to utilize unnatural substrates.Results: We used a blocked mutant of a bimodular PKS in which formation of the triketide product could occur only via uptake and processing of a synthetic diketide intermediate. By introducing systematic changes in the native diketide structure, by means of the synthesis of unnatural diketide analogs, we have shown that the ketosynthase domain of module 2 (KS2 domain) in 6-deoxyerythronolide B synthase (DEBS) tolerates a broad range of variations in substrate structure, but it strongly discriminates against some others.Conclusions: Defining the boundaries of substrate recognition within PKS domains is crucial to the rationally engineered biosynthesis of novel polyketide products, many of which could be prepared only with great difficulty, if at all, by direct chemical synthesis or semi-synthesis. Our results suggest that the KS2 domain of DEBS1 has a relatively relaxed specificity that can be exploited for the design and synthesis of medicinally important polyketide products.  相似文献   

4.
BACKGROUND: Polyketides are structurally diverse natural products that have a range of medically useful activities. Nonaromatic bacterial polyketides are synthesised on modular polyketide synthase (PKS) multienzymes, in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We have constructed bimodular and trimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only modules 1 and 2 and a thioesterase (TE), by substituting multiple domains with appropriate counterparts derived from the rapamycin PKS. Hybrid PKSs were obtained that synthesised the predicted target triketide lactones, which are simple analogues of cholesterol-lowering statins. In constructing intermodular fusions, whether between modules in the same or in different proteins, it was found advantageous to preserve intact the acyl carrier protein-ketosynthase (ACP-KS) didomain that spans the junction between successive modules. CONCLUSIONS: Relatively simple considerations govern the construction of functional hybrid PKSs. Fusion sites should be chosen either in the surface-accessible linker regions between enzymatic domains, as previously revealed, or just inside the conserved margins of domains. The interaction of an ACP domain with the adjacent KS domain, whether on the same polyketide or not, is of particular importance, both through conservation of appropriate protein-protein interactions, and through optimising molecular recognition of the altered polyketide chain in the key transfer of the acyl chain from the ACP of one module to the KS of the downstream module.  相似文献   

5.
Detailed analysis of the modular Type I polyketide synthase (PKS) involved in the biosynthesis of the marginolactone azalomycin F in mangrove Streptomyces sp. 211726 has shown that only nineteen extension modules are required to accomplish twenty cycles of polyketide chain elongation. Analysis of the products of a PKS mutant specifically inactivated in the dehydratase domain of extension‐module 1 showed that this module catalyzes two successive elongations with different outcomes. Strikingly, the enoylreductase domain of this module can apparently be “toggled” off and on : it functions in only the second of these two cycles. This novel mechanism expands our understanding of PKS assembly‐line catalysis and may explain examples of apparent non‐colinearity in other modular PKS systems.  相似文献   

6.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

7.
The course of the enigmatic iterative use of a polyketide synthase module was deduced from targeted domain inactivation in the aureothin assembly line. Mutational analyses revealed that the N-terminus of AurA is not involved in the iteration process, ruling out an ACP-ACP shuttle. Furthermore, an AurA(KS°, ACP°)-AurA(AT(0)) heterodimer proved to be nonfunctional, whereas aureothin production was restored in a ΔaurA mutant complemented with AurA(KS°)-AurA(ACP°). This finding supports a model according to which the ACP-bound polyketide intermediate is transferred back to the KS domain on the opposite PKS strand.  相似文献   

8.
Detailed analysis of the modular Type I polyketide synthase (PKS) involved in the biosynthesis of the marginolactone azalomycin F in mangrove Streptomyces sp. 211726 has shown that only nineteen extension modules are required to accomplish twenty cycles of polyketide chain elongation. Analysis of the products of a PKS mutant specifically inactivated in the dehydratase domain of extension-module 1 showed that this module catalyzes two successive elongations with different outcomes. Strikingly, the enoylreductase domain of this module can apparently be “toggled” off and on : it functions in only the second of these two cycles. This novel mechanism expands our understanding of PKS assembly-line catalysis and may explain examples of apparent non-colinearity in other modular PKS systems.  相似文献   

9.
Type I polyketide synthases (PKSs) consist of modules that add two-carbon units in polyketide backbones. Rearranging modules from different sources can yield novel enzymes that produce unnatural products, but the rules that govern module-module communication are still not well known. The construction and assay of hybrid bimodular units with synthetic PKS genes were recently reported. Here, we describe the rational design of trimodular PKSs by combining bimodular units. A cloning-expression system was developed to assemble and test 54 unnatural trimodular PKSs flanked by the loading module and the thioesterase from the erythromycin synthase. Remarkably, 96% of them produced the expected polyketide. The obtained results represent an important milestone toward the ultimate goal of making new bioactive polyketides by rational design. Additionally, these results show a path for the production of customized tetraketides by fermentation, which can be an important source of advanced intermediates to facilitate the synthesis of complex products.  相似文献   

10.
A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes.  相似文献   

11.
Bacterial aromatic polyketides are pharmacologically important natural products. A critical parameter that dictates product structure is the carbon chain length of the polyketide backbone. Systematic manipulation of polyketide chain length represents a major unmet challenge in natural product biosynthesis. Polyketide chain elongation is catalyzed by a heterodimeric ketosynthase. In contrast to homodimeric ketosynthases found in fatty acid synthases, the active site cysteine is absent from the one subunit of this heterodimer. The precise role of this catalytically silent subunit has been debated over the past decade. We demonstrate here that this subunit is the primary determinant of polyketide chain length, thereby validating its designation as chain length factor. Using structure-based mutagenesis, we identified key residues in the chain length factor that could be manipulated to convert an octaketide synthase into a decaketide synthase and vice versa. These results should lead to novel strategies for the engineered biosynthesis of hitherto unidentified polyketide scaffolds.  相似文献   

12.
Heterologous expression and mutagenesis of the enterocin type II polyketide synthase (PKS) system suggest for the first time that the association of an extended set of proteins and substrates is needed for the effective production of the enterocin-wailupemycin polyketides. In the absence of its endogenous ketoreductase (KR) EncD in either the enterocin producer "Streptomyces maritimus" or the engineered host S. lividans K4-114, the enterocin minimal PKS is unable to produce benzoate-primed polyketides, even when complemented with the homologous actinorhodin KR ActIII or with EncD active site mutants. These data suggest that the enterocin PKS requires EncD to serve a catalytic and not just a structural role in the functional PKS enzyme complex. This strongly implies that EncD reduces the polyketide chain during elongation rather than after its complete assembly, as suggested for most type II PKSs.  相似文献   

13.
The entire gene locus encoding the biosynthesis of the potent glutathione-S-transferase inhibitors and apoptosis inducers benastatin A and B has been cloned and sequenced. The cluster identity was unequivocally proven by deletion of flanking regions and heterologous expression in S. albus and S. lividans. Inactivation and complementation experiments revealed that a KSIII component (BenQ) similar to FabH is crucial for providing and selecting the rare hexanoate PKS starter unit. In the absence of BenQ, several novel penta- and hexacyclic benastatin derivatives with antiproliferative activities are formed. In total, five new compounds were isolated and fully characterized, and the chemical analysis was confirmed by derivatization. The most intriguing observation is that the ben PKS can utilize typical straight and branched fatty acid synthase primers. If shorter straight-chain starters are utilized, the length of the polyketide backbone is increased, resulting in the formation of an extended, hexacyclic ring system reminiscent of proposed intermediates in the griseorhodin and fredericamycin pathways. Analysis and manipulation of the hybrid fatty acid polyketide pathway provides strong support for the hypothesis that the number of chain elongations is dependent on the total size of the polyketide chain that is accommodated in the PKS enzyme cavity. Our results also further substantiate the potential of metabolic engineering toward polyphenols with altered substituents and ring systems.  相似文献   

14.
BACKGROUND: The macrolide antibiotic erythromycin A, like other complex aliphatic polyketides, is synthesised by a bacterial modular polyketide synthase (PKS). Such PKSs, in contrast to other fatty acid and polyketide synthases which work iteratively, contain a separate set or module of enzyme activities for each successive cycle of polyketide chain extension, and the number and type of modules together determine the structure of the polyketide product. Thus, the six extension modules of the erythromycin PKS (DEBS) together catalyse the production of the specific heptaketide 6-deoxyerythronolide B. RESULTS: A mutant strain of the erythromycin producer Saccharopolyspora erythraea, which accumulates the aglycone intermediate erythronolide B, was found unexpectedly to produce two novel octaketides, both 16-membered macrolides. These compounds were detectable in fermentation broths of wild-type S. erythraea, but not in a strain from which the DEBS genes had been specifically deleted. From their structures, both of these octaketides appear to be aberrant products of DEBS in which module 4 has 'stuttered', that is, has catalysed two successive cycles of chain extension. CONCLUSIONS: The isolation of novel DEBS-derived octaketides provides the first evidence that an extension module in a modular PKS has the potential to catalyse iterative rounds of chain elongation like other type I FAS and PKS systems. The factors governing the extent of such 'stuttering' remain to be determined.  相似文献   

15.
The excited thioesterase (TE) domain from the vicenistatin polyketide synthase (PKS) efficiently catalyzed the macrolactam formation of the N-acetylcysteamine thioester of the seco-amino acid of the aglycon vicenilactam. This result indicates that the vicenistatin PKS TE domain cyclizes the extended polyketide chain on the ACP domain in the PKS. Furthermore, the simple ethyl ester of the seco-amino acid was also found to be used as a substrate of the TE domain with similar efficiency.  相似文献   

16.
The structural wealth of complex polyketide metabolites produced by bacteria results from intricate, highly evolved biosynthetic programs of modular assembly lines, in which the number of modules defines the size of the backbone, and the domain composition controls the degree of functionalization. We report a remarkable case where polyketide chain length and scaffold depend on the function of a single β‐keto processing domain: A ketoreductase domain represents a switch between diverging biosynthetic pathways leading either to the antifungal aureothin or to the nematicidal luteoreticulin. By a combination of heterologous expression, mutagenesis, metabolite analyses, and in vitro biotransformation we elucidate the factors governing non‐colinear polyketide assembly involving module skipping and demonstrate that a simple point mutation in type I polyketide synthase (PKS) can have a dramatic effect on the metabolic profile. This finding sheds new light on possible evolutionary scenarios and may inspire future synthetic biology approaches.  相似文献   

17.
BACKGROUND: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete. RESULTS: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea. CONCLUSIONS: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete-myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

18.
The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexaketide chain elongation intermediate is transferred from PikAIII ACP5 to PikAIV ACP6 before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.  相似文献   

19.
He J  Hertweck C 《Chemistry & biology》2003,10(12):1225-1232
Analysis of the type I modular polyketide synthase (PKS) involved in the biosynthesis of the rare nitroaryl polyketide metabolite aureothin (aur) from Streptomyces thioluteus HKI-227 has revealed only four modules to catalyze the five polyketide chain extensions required. By heterologous expression of the aur PKS cluster, direct evidence was obtained that these modules were sufficient to support aureothin biosynthesis. It appears that one module catalyzes two successive cycles of chain extension, one of the first examples of a PKS in which such iteration or "stuttering" is required to produce the normal polyketide product. In addition, lack of a specified loading domain implicates a novel PKS priming mechanism involving the unique p-nitrobenzoate starter unit. The 27 kb aur gene cluster also encodes a novel N-oxidase, which may represent the first member of a new family of such enzymes.  相似文献   

20.
Trans-acyltransferase polyketide synthases (trans-AT PKSs) are an important group of bacterial enzymes producing bioactive polyketides. One difference from textbook PKSs is the presence of one or more free-standing AT-like enzymes. While one homolog loads the PKS with malonyl units, the function of the second copy (AT2) was unknown. We studied the two ATs PedC and PedD involved in pederin biosynthesis in an uncultivated symbiont. PedD displayed malonyl- but not acetyltransferase activity toward various acyl carrier proteins (ACPs). In contrast, the AT2 PedC efficiently hydrolyzed acyl units bound to N-acetylcysteamine or ACP. It accepted substrates with various chain lengths and functionalizations but did not cleave malonyl-ACP. These data are consistent with the role of PedC in?PKS proofreading, suggesting a similar function for other AT2 homologs and providing strategies for?polyketide titer improvement and biosynthetic investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号