首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Some protein kinases are known to acquire resistance to selective small molecule inhibitors upon mutation of a conserved threonine at the ATP binding site to a larger residue. Here, we performed a comprehensive mutational analysis of this structural element and determined the cellular sensitivities of several disease-relevant tyrosine kinases against various inhibitors. Mutant kinases possessing a larger side chain at the critical site showed resistance to most compounds tested, such as ZD1839, PP1, AG1296, STI571, and a pyrido[2,3-d]pyrimidine inhibitor. In contrast, indolinones affected both wild-type and mutant kinases with similar potencies. Resistant mutants were established for pharmacological analysis of betaPDGF receptor-mediated signaling and allowed the generation of a drug-inducible system of cellular Src kinase activity. Our data establish a conserved structural determinant of protein kinase sensitivity relevant for both signal transduction research and drug development.  相似文献   

2.
The regulation of protein kinases requires flexibility, especially near the ATP binding site. The cancer drug target Aurora A is inhibited by the ATP site inhibitor VX680, and published crystal structures show two distinct conformations. In one, a refolded glycine-rich loop creates a stacked π-π interaction between the conserved aromatic residue of the glycine-rich loop hairpin turn (F144) and the inhibitor. This refolding, associated with binding to a peptide derived from the cofactor TPX2, is absent in the other structure. We use surface plasmon resonance to measure VX680 binding to native and mutant F144A Aurora A kinase domains, with and without the TPX2 peptide. Results show that the F144 aromatic side chain contributes 2 kcal/mol to the VX680 binding energy, independent of the TPX2 peptide. This indicates that distinct VX680 bound conformations of Aurora A cannot be simply correlated with TPX2 binding and that Aurora A retains flexibility when inhibitor-bound. Molecular dynamics simulations show that alternate geometries for the π-π interactions are feasible in the absence of the rigidifying packing interactions seen in the crystal lattice.  相似文献   

3.
Protein kinases continue to be hot targets in drug discovery research, as they are involved in many essential cellular processes and their deregulation can lead to a variety of diseases. A series of 32 enantiomerically pure inhibitors was synthesized and tested towards protein kinase A (PKA) and protein kinase B mimic PKAB3 (PKA triple mutant). The ligands bind to the hinge region, ribose pocket, and glycine‐rich loop at the ATP site. Biological assays showed high potency against PKA, with Ki values in the low nanomolar range. The investigation demonstrates the significance of targeting the often neglected glycine‐rich loop for gaining high binding potency. X‐ray co‐crystal structures revealed a multi‐facetted network of ligand–loop interactions for the tightest binders, involving orthogonal dipolar contacts, sulfur and other dispersive contacts, amide–π stacking, and H‐bonding to organofluorine, besides efficient water replacement. The network was analyzed in a computational approach.  相似文献   

4.
BACKGROUND: Aminoglycoside antibiotic resistance is largely the result of the production of enzymes that covalently modify the drugs including kinases (APHs) with structural and functional similarity to protein and lipid kinases. One of the most important aminoglycoside resistance enzymes is AAC(6')-APH(2"), a bifunctional enzyme with both aminoglycoside acetyltransferase and kinase activities. Knowledge of enzyme active site structure is important in deciphering the molecular mechanism of antibiotic resistance and here we explored active site labeling techniques to study AAC(6')-APH(2") structure and function. RESULTS: AAC(6')-APH(2") was irreversibly inactivated by wortmannin, a potent phosphatidylinositol 3-kinase inhibitor, through the covalent modification of a conserved lysine in the ATP binding pocket. 5'-[p-(Fluorosulfonyl)benzoyl]adenosine, an electrophilic ATP analogue and known inactivator of other APH enzymes such as APH(3')-IIIa, did not inactivate AAC(6')-APH(2"), and reciprocally, wortmannin did not inactivate APH(3')-IIIa. CONCLUSIONS: These distinct active site label sensitivities point to important differences in aminoglycoside kinase active site structures and suggest that design of broad range, ATP binding site-directed inhibitors against APHs will be difficult. Nonetheless, given the sensitivity of APH enzymes to both protein and lipid kinase inhibitors, potent lead inhibitors of this important resistance enzyme are likely to be found among the libraries of compounds directed against other pharmacologically important kinases.  相似文献   

5.
Proviral integration site of Moloney virus-2 (PIM2) is overexpressed in multiple human cancer cells and high level is related to poor prognosis; thus, PIM2 kinase is a rational target of anti-cancer therapeutics. Several chemical inhibitors targeting PIMs/PIM2 or their downstream signaling molecules have been developed for treatment of different cancers. However, their off-target toxicity is common in clinical trials, so they could not be advanced to official approval for clinical application. Here, we produced human single-chain antibody fragments (HuscFvs) to PIM2 by using phage display library, which was constructed in a way that a portion of phages in the library carried HuscFvs against human own proteins on their surface with the respective antibody genes in the phage genome. Bacterial derived-recombinant PIM2 (rPIM2) was used as an antigenic bait to fish out the rPIM2-bound phages from the library. Three E. coli clones transfected with the HuscFv genes derived from the rPIM2-bound phages expressed HuscFvs that bound also to native PIM2 from cancer cells. The HuscFvs presumptively interact with the PIM2 at the ATP binding pocket and kinase active loop. They were as effective as small chemical drug inhibitor (AZD1208, which is an ATP competitive inhibitor of all PIM isoforms for ex vivo use) in inhibiting PIM kinase activity. The HuscFvs should be engineered into a cell-penetrating format and tested further towards clinical application as a novel and safe pan-anti-cancer therapeutics.  相似文献   

6.
Human epidermal growth factor receptor 2 (ErbB2) is an attractive therapeutic target for metastatic breast cancer. The kinase has been clinically observed to harbor a gatekeeper mutation T798M in its active site, which causes acquired resistance to the first-line targeted breast cancer therapy with small-molecule tyrosine kinase inhibitors. Previously, several theories have been proposed to explain the molecular mechanism of gatekeeper mutation-caused drug resistance, such as blocking of inhibitor binding and increasing of ATP affinity. In the current study, the direct binding of three wild type-selective inhibitors (Lapatinib, AEE788 and TAK-285) and two wild type-sparing inhibitors (Staurosporine and Bosutinib) to the wild-type ErbB2 and its T798M mutant are investigated in detail by using rigorous computational analysis and binding affinity assay. Substitution of the polar threonine with a bulky methionine at residue 798 can impair and improve the direct binding affinity of wild type-selective and wild type-sparing inhibitors, respectively. Hindrance effect is responsible for the affinity decrease of wild type-selective inhibitors, while additional nonbonded interactions contribute to the affinity increase of wild type-sparing inhibitors, thus conferring selectivity to the inhibitors for mutant over wild type. The binding affinity of Staurosporine and Bosutinib to ErbB2 kinase domain is improved by 11.9-fold and 2.1-fold upon T798M mutation, respectively. Structural analysis reveals that a nonbonded network of S–π contact interactions (for Staurosporine) or an S-involving halogen bond (for Bosutinib) forms with the sulfide group of mutant Met798 residue.  相似文献   

7.
8.
Summary We have carried out up to 8.0 ns molecular dynamics simulation on the ATP-bound complexes of EGFR and HER-2 (homology model) receptor kinase domains to explore the possible consequences of amino acid residue changes in or close to the ATP site that might provide insights for selectivity of these kinases towards ATP site inhibitors. The simulation results show the formation of a channel under Thr766 following the movement of the side chain of Gln767 away from the hinge in EGFR. In HER-2, a similar movement of Gln799 occurs, but a simultaneous movement of Arg784 towards the hinge region occurs that tends to close the channel. The movement of Arg784 in HER-2 appears to result from the absence of an anchoring residue like Asp746 in EGFR, which has been changed to Gly778 in HER-2. In EGFR, this Arg784 is held away from the hinge region by interaction with Asp746, thereby leaving the channel open. This might be an important contributory factor to differences in selectivity of the ligands between the two kinases, probably more so than the conservative change of Cys751 of EGFR to serine in HER-2 at the ATP site.  相似文献   

9.
The conformation of the activation loop (T‐loop) of protein kinases underlies enzymatic activity and influences the binding of small‐molecule inhibitors. By using single‐molecule fluorescence spectroscopy, we have determined that phosphorylated Aurora A kinase is in dynamic equilibrium between a DFG‐in‐like active T‐loop conformation and a DFG‐out‐like inactive conformation, and have measured the rate constants of interconversion. Addition of the Aurora A activating protein TPX2 shifts the equilibrium towards an active T‐loop conformation whereas addition of the inhibitors MLN8054 and CD532 favors an inactive T‐loop. We show that Aurora A binds TPX2 and MLN8054 simultaneously and provide a new model for kinase conformational behavior. Our approach will enable conformation‐specific effects to be integrated into inhibitor discovery across the kinome, and we outline some immediate consequences for structure‐based drug discovery.  相似文献   

10.
The clinical success of the Bcr-Abl tyrosine kinase inhibitor Gleevec((R)) and the recent clinical approval of a number of small molecule drugs that target protein kinases have intensified the search for novel protein kinase inhibitors. Since most small molecule kinase inhibitors target the highly conserved ATP-binding pocket of this enzyme family, the target selectivity of these molecules is a major concern. Due to the large size of the human kinome, it is a formidable challenge to determine the absolute specificity of a given protein kinase inhibitor, but recent technological developments have made substantial progress in achieving this goal. This review summarizes some of the most recent experimental techniques that have been developed for the determination of protein kinase inhibitor selectivity. Special emphasis is placed on the results of these screens and the general insights that they provide into kinase inhibitor target selectivity.  相似文献   

11.
Protein kinases play crucial roles in regulating virtually every cellular process and are currently attracting tremendous interest as drug targets from the pharmaceutical industry. The major challenges facing the development of the potential kinase inhibitor drugs are: selectivity, physical properties (solubility, molecular weight), and pharmacological properties (bioavailability, half life, toxicity, etc.) This review focuses on how selective protein kinase inhibitors that target the ATP and allosteric binding sites are currently being identified and optimized.  相似文献   

12.
Polo-like kinase 1 (Plk1), a member of a family of serine/threonine kinases, is an attractive target for the development of anticancer drugs because it is involved in the regulation of cell-cycle progression and cytokinesis. This kinase provides two pockets for developing Plk1 inhibitors: the N-terminal catalytic domain (NCD) and the polo-box domain (PBD). For both of the two pockets, some natural products were identified as Plk1 inhibitors and some synthetic Plk1 inhibitors were developed by mimicking ATP and phosphopeptides, natural products binding to NCD and PBD respectively. This article not only reviews the progression of Plk1 inhibitors binding to these two pockets, but also discusses diversity evolution and jump in the process of drug development using Plk1 inhibitors as examples and how they impact on drug design and pharmacophore modeling.  相似文献   

13.
Protein kinases are the second most prominent group of drug targets, after G-protein-coupled receptors. Despite their distinct inhibition mechanisms, the majority of kinase inhibitors engage the conserved hydrogen bond interactions with the backbone of hinge residues. We mined Pfizer internal crystal structure database (CSDb) comprising of several thousand of public as well as internal X-ray binary complexes to compile an inclusive list of hinge binding scaffolds. The minimum ring scaffolds with directly attached hetero-atoms and functional groups were extracted from the full compounds by applying a rule-based filtering procedure employing a comprehensive annotation of ATP-binding site of the human kinase complements. The results indicated large number of kinase inhibitors of diverse chemical structures are derived from a relatively small number of common scaffolds, which serve as the critical recognition elements for protein kinase interaction. Out of the nearly 4,000 kinase-inhibitor complexes in the CSDb we identified approximately 600 unique scaffolds. Hinge scaffolds are overwhelmingly flat with very little sp3 characteristics, and are less lipophilic than their corresponding parent compounds. Examples of the most common as well as the uncommon hinge scaffolds are presented. Although the most common scaffolds are found in complex with multiple kinase targets, a large number of them are uniquely bound to a specific kinase, suggesting certain scaffolds could be more promiscuous than the others. The compiled collection of hinge scaffolds along with their three-dimensional binding coordinates could serve as basis set for hinge hopping, a practice frequently employed to generate novel invention as well as to optimize existing leads in medicinal chemistry.  相似文献   

14.
15.
Interactions between kinases and small molecule inhibitors can be activation state dependent. A detailed understanding of inhibitor binding therefore requires characterizing interactions across multiple activation states. We have systematically explored the effects of ABL1 activation loop phosphorylation and PDGFR family autoinhibitory juxtamembrane domain docking on inhibitor binding affinity. For a diverse compound set, the affinity patterns correctly classify inhibitors as having type I or type II binding modes, and we show that juxtamembrane domain docking can have dramatic negative effects on inhibitor affinity. The results have allowed us to associate ligand-induced conformational changes observed in cocrystal structures with specific energetic costs. The approach we describe enables investigation of the complex relationship between kinase activation state and compound binding affinity and should facilitate strategic inhibitor design.  相似文献   

16.
The kinase domain of LRRK2 is increasingly gaining attention as a promising therapeutic target due to pathogenic mutation leading to development of Parkinson’s disease. Mutation in G2019S and I2020T increases the kinase activity, while A2016T mutation causes drug resistance. Increased kinase activity of LRRK2 has been associated with deposition of tau and α-synuclein proteins. However, mechanism responsible for increase in activity due to mutation is not known. In the present study, extensive molecular dynamics study has been performed on both wild and mutant homology models of DYG-In (active) conformation of the kinase domain of LRRK2 in the absence/presence of ATP at the active site to study the behavior of DYG loop. In absence of ATP, it is observed that G2019S and I2020T mutants stabilize DYG loop by increasing formation of hydrogen bond with neighboring residues, mainly with GLU 1920 and ILE 1991, respectively. In ATP-kinase complex, DYG loop also increases hydrogen bonding with neighboring residues in mutant LRRK2. The study indicates that polar side chain of mutated residues increases the polarity of DYG loop, causing an increase in hydrogen bonding with neighboring residues to stabilize the active conformation of kinase domain in LRRK2. The binding free energy of ATP is found to be higher in mutated kinase as compared to wild, due to more stable kinase domain.  相似文献   

17.
The generation of synthetic compounds with exclusive target specificity is an extraordinary challenge of molecular recognition and demands novel design strategies, in particular for large and homologous protein families such as protein kinases with more than 500 members. Simple organic molecules often do not reach the necessary sophistication to fulfill this task. Here, we present six carefully tailored, stable metal-containing compounds in which unique and defined molecular geometries with natural-product-like structural complexity are constructed around octahedral ruthenium(II) or iridium(III) metal centers. Each of the six reported metal compounds displays high selectivity for an individual protein kinase, namely GSK3α, PAK1, PIM1, DAPK1, MLCK, and FLT4. Although being conventional ATP-competitive inhibitors, the combination of the unusual globular shape and rigidity characteristics, of these compounds facilitates the design of highly selective protein kinase inhibitors. Unique structural features of the octahedral coordination geometry allow novel interactions with the glycine-rich loop, which contribute significantly to binding potencies and selectivities. The sensitive correlation between metal coordination sphere and inhibition properties suggests that in this design, the metal is located at a "hot spot" within the ATP binding pocket, not too close to the hinge region where globular space is unavailable, and at the same time not too far out toward the solvent where the octahedral coordination sphere would not have a significant impact on potency and selectivity. This study thus demonstrates that inert (stable) octahedral metal complexes are sophisticated structural scaffolds for the design of highly selective chemical probes.  相似文献   

18.
Many missense mutations in human epidermal growth factor receptor (EGFR) are clinically involved in lung cancer and may cause acquired resistance to tyrosine kinase inhibitors. Traditionally, the resistance is considered to be established by impairing inhibitor affinity due to the mutations. However, it was found that, instead of blocking inhibitor binding, the gatekeeper mutation T790M can improve the kinase affinity for its natural substrate adenosine triphosphate (ATP), which is thus regarded as a “generic” resistance mutation that will reduce the potency of any ATP-competitive reversible kinase inhibitor. In this study, we attempt to systematically investigate the binding behavior of ATP to clinically observed EGFR missense mutants in nonsmall-cell lung cancer to identify those substantial mutations that may significantly increase (or decrease) ATP affinity. Several substantial mutations are excluded because they are also involved in kinase's catalytic activity or directly influence inhibitor binding, thus largely complicating the multiple dependent relationships of kinase, ATP, and inhibitor. Two new “generic” resistance mutations, A839T and E758G, are identified, which can improve ATP affinity by forming a favorable hydrogen bond and by eliminating unfavorable electrostatic effect between the kinase and ATP, respectively.  相似文献   

19.
20.
The elucidation of specific functions of protein kinase C (PKC) subtypes in physiological processes is an important challenge for the future development of new drug targets. Subtype‐selective PKC agonists and antagonists are useful biological tools for this purpose. Most of the currently used PKC modulators elicit their activities through binding to the ATP binding site of PKC, which shares many features with other kinases. PKC modulators that target the PKC regulatory domain are considered to be advantageous in terms of selectivity, because the structure of the regulatory domain is intrinsic to each PKC subtype. In this paper, we describe the identification of new potent and conventional PKC‐selective inhibitors that target the regulatory domain. The inhibitors contain a phorbol skeleton, a naturally occurring potent and selective PKC regulatory domain binder, with a perfluorinated alkyl group and a polyether hydrophilic chain on a terephthaloyl aromatic ring at the C12 position. Both of these substituents are essential for the potent inhibitory activity. Specifically, the binding affinity between PKC and the phorbol ester analogues was improved by an electron‐deficient aromatic ring at C12. This finding cannot be explained by the previously proposed binding model and suggests a new binding mode between phorbol esters and PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号