首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Adsorption on activated carbon is an efficient method for the removal of toxic dyes. However, since commercially available charcoal is quite expensive, activated carbon obtained from agricultural by‐products may serve as a good replacement. In this study, activated carbon was prepared from pepper peduncle, an agricultural waste product, by microwave activation. The synthesized carbon was characterized by X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis techniques. It was then used for the adsorption of methylene blue dye from an aqueous solution, which was studied as a function of the dye concentration, contact time, and temperature. The adsorption data were fitted to Freundlich and Langmuir isotherm models. The adsorption kinetics was studied by employing first‐ and second‐order kinetic models, and it was found that the adsorption of methylene blue on the synthesized activated carbon follows a second‐order kinetic model. Effect of temperature on the adsorption process was studied, and the thermodynamic parameters such as activation energy, change in enthalpy, entropy, and free energy of adsorption were calculated on the basis of the absolute theory of reaction rate expressions. About 99.5–91.8% of the dye was removed for an initial dye concentration in the range 20–100 mg/g in 1 h. Thus the synthesized activated carbon was found to be very efficient in adsorbing the dye.  相似文献   

2.
The present study narrates the eminent role of agricultural wastes as adsorbents viz., Indian almond shell carbon (IASC), ground nut shell carbon (GSC), areca nut shell carbon (ASC), tamarind shell carbon (TSC) and cashew nut shell carbon (CSC) for the removal of Azure A (AA) dye from waste water. Different experimental parameters such as effect of initial concentration, contact time, dose, pH and particle size have been studied. The experimental results were analysed using Freundlich, Langmuir, Temkin, Redlich–Peterson and Dubinin–Radushkevich isotherm models. Different kinetic equations (first order, pseudo first order and pseudo second order) were applied to study the adsorption kinetics of AA on various activated carbons. Surface morphology of the adsorbents before and after adsorption is studied by Scanning Electron Microscopy (SEM). FT-IR studies revealed the presence of functional groups of dye on the adsorbents. It is inferred from the experimental result that the activated carbons (IASC, GSC, ASC, TSC and CSC) from agricultural wastes can be applied as an adsorbent substitute to commercial activated carbon (CAC) in the removal of AA dye from waste water.  相似文献   

3.
Biomass waste, which is abundantly available has been studied as low cost biosorbent for dye sequestration from waste water. The present review reports on recent development for remediation of methylene blue dye by agricultural waste and fruit peel waste material. The aim of this study was to revise latest literature in the field of dye adsorption and discuss the dye adsorption capacity of different types of adsorbents. The activated carbon prepared from several types of biomass waste material enhances the adsorption efficiency after modification. The variety of activating agents, method of activation, characterization of biosorbent material like SEM, EDAX, BET surface area and FTIR analysis has been explored in the present review. The dye adsorption factors such as effect of pH, agitation time, temperature, adsorbate and adsorbent dose were discussed. The detailed investigation on applicability of isotherm model, kinetic model and thermodynamic parameters has also been presented. The adsorption kinetics and adsorption isotherm model focus on selectivity of adsorbent. Adsorption mechanism, Influence of surface area, influence of pHpzc and comparative study of biomass waste adsorbent with other adsorbents have been carried out. The use of biomass waste adsorbents is economically feasible, environmental healthy and found to have outstanding removal capacity of dyes.  相似文献   

4.
The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.  相似文献   

5.
Dye and its removal from aqueous solution by adsorption: A review   总被引:1,自引:0,他引:1  
In this review article the authors presented up to-date development on the application of adsorption in the removal of dyes from aqueous solution. This review article provides extensive literature information about dyes, its classification and toxicity, various treatment methods, and dye adsorption characteristics by various adsorbents. One of the objectives of this review article is to organise the scattered available information on various aspects on a wide range of potentially effective adsorbents in the removal of dyes. Therefore, an extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here. Dye bearing waste treatment by adsorption using low cost alternative adsorbent is a demanding area as it has double benefits i.e. water treatment and waste management. Further, activated carbon from biomass has the advantage of offering an effected low cost replacement for non-renewable coal based granular activated carbon provided that they have similar or better adsorption on efficiency. The effectiveness of various adsorbents under different physico-chemical process parameters and their comparative adsorption capacity towards dye adsorption has also been presented. This review paper also includes the affective adsorption factors of dye such as solution pH, initial dye concentration, adsorbent dosage, and temperature. The applicability of various adsorption kinetic models and isotherm models for dye removal by wide range of adsorbents is also reported here. Conclusions have been drawn from the literature reviewed and few suggestions for future research are proposed.  相似文献   

6.
Abstract

Solar cells based on titania require the use of sensitizing dyes in order to make the absorption band coincident with the solar spectrum. The most successful sensitizing dyes are based on Ru‐bipyridyls and are chosen for their absorption and redox characteristics. In addition to absorbing visible light, the sensitizing dye injects an electron from its excited state into the band gap of the titania. The injected electron must be conducted through the titania to an electrode upon which the titania is coated. One of the energy wasting pathways available to the injected electron is back transfer to an oxidized dye species on the surface of the titania. We have discovered a simple means of alleviating this energy wasting pathway by anchoring aromatic amines, i.e., co‐sensitizers, at low concentration along with the Ru‐based bipyridyl sensitizing dye to the surface of titania nanoparticles. Our results indicate that there is a significant increase in cell efficiency (~15% at AM 1.5, area ≥1 cm2) primarily due to an increase in current when these species are present on the surface in combination with the dyes. We will report our preliminary results on a series of co‐sensitizers, and we will compare these to literature findings which use similar compounds as either co‐adsorbed species on titania or as substituents on the sensitizing dye molecule itself.  相似文献   

7.
In the present work, solvent extraction using reverse micelles is proposed for the removal of organic dyes from water. In this approach, the dye is solubilized in the aqueous core of the reverse micelles, which are present in the organic phase. The organic phase is subsequently separated from the aqueous phase leading to signifi-cant removal of dye. Experimental results reveal that the electrostatic interaction between the oppositely charged surfactant head group present in the reverse micelles and the dye molecule plays a key role in the separation. The removal of the anionic methyl orange dye from water is carried out in the presence of cationic hexadecyltrimethyl ammonium bromide surfactant, whereas the removal of the cationic methylene blue dye is carried out in the presence of anionic sodium dodecylbenzene sulfonate surfactant. Amyl alcohol is used as the solvent. The influence of parameters such as dye concentrations, surfactant concentrations, pH, and KCl and NaBr concentrations on the percentage removal of dye was studied. The percentage removal of dye is decreased with the increase in dye concentration in the feed. The increase in surfactant concentration resulted in higher dye removal, because more reverse micelles could be hosted in the organic phase. The increase in aqueous phase pH resulted in enhanced removal of methyl orange from water, while in the case of methylene blue the percentage removal decreased. The increase in KCl and NaBr concentrations resulted in decreased percentage removal of methylene blue, whereas the percentage removal of methyl orange was increased. The effect of pH and salt concentration is explained based on charge transfer mechanism and electrostatic interactions and dye-surfactant complex formation.  相似文献   

8.
Bottom ash, a power plant waste, and de-oiled soya, an agricultural waste material, were employed for the removal and recovery of Quinoline Yellow, a water-soluble dye. Characterization of adsorbent materials was made by their infrared and differential thermal analysis curves. Along with batch adsorption studies, which involve effect of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature, etc., kinetic studies and column operations were also made to remove the dye from wastewater. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and first-order adsorption kinetics was observed in both the cases. The paper also incorporates Langmuir and Freundlich adsorption isotherm models, which are used to calculate thermodynamic parameters and also to suggest a plausible mechanism of the ongoing adsorption processes. Fixed bed columns were prepared for both the adsorbents and bulk removal of the dye was achieved by eluting aqueous solution of the dye and saturation factor for both columns were evaluated. Dilute NaOH solution was then percolated through the exhausted columns to recover the adsorbed dye.  相似文献   

9.
Research on Chemical Intermediates - There is a growing trend to employ agricultural waste/by-products (AWBs) as substrates for the development of dye bio-sorbents, and surface modification plays a...  相似文献   

10.
Polyurethane foam was chemically functionalized with salicylate through the –N?N– group generating a stable chelating sorbent PUFSalicylate (PUFS) for being used as a low cost, available, and renewable adsorbent for the removal of Malachite Green (MG) textile dye from aqueous solutions. Batch experiments were carried out for sorption kinetics and isotherms. The synthesized adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microcopy (SEM), and X-ray diffraction. The present study is related to the removal of colorants. Adsorption of MG dye on PUFS was studied as a function of different experimental parameters such as temperature, contact time, amount of adsorbent, and pH. A spectrophotometer technique was used for measuring the extent of adsorption. The data were fitted with Langmuir and Freundlich isotherm equations and their corresponding constants were calculated from the slopes and intercepts of their respective lines. From the measured adsorption isotherms at different temperatures 298, 308, and 318 K, it was found that adsorption increases as the temperature increases within this range. The measured adsorption amount of MG dye increases with increased pH.  相似文献   

11.
Deoiled soya, an agricultural waste material, and bottom ash, a waste of power plants, have been successfully used for the removal and recovery of the hazardous water-soluble dye brilliant green from water. To remove the dye from water, batch adsorption studies have been carried out by observing the effects of pH, concentration, amounts of adsorbents, size of adsorbent particles, etc. Attempts have also been made to monitor the adsorption process through Langmuir, Freundlich, Tempkin, and D-R adsorption isotherm models. Relevant thermodynamic parameters have also been calculated from these models. The adsorption process has been found endothermic and feasible at all the temperatures. The kinetics of the adsorption was also recorded and indicates pseudo-second-order kinetics in both cases. Kinetic operations also reveal the involvement of a film diffusion mechanism for the deoiled soya adsorption at all the temperatures, while bottom ash undergoes through a particle diffusion mechanism at only 30 °C and at higher temperatures a film diffusion mechanism operates. Bulk removal of the dye has been carried out through column studies for both adsorbents. Attempts have also been made to recover the dye from exhausted columns by eluting sulfuric acid of pH 3.  相似文献   

12.
Toxic dye removal, one of the most serious and common industrial pollutants released into natural water, is a critical issue for modern civilization. In this study, a series of UiO-66 composites was synthesized with addition of HKUST-1 using solvothermal method, which was used to remove RBBR dye. The structure, morphology and surface area of the composites were studied by several analyses. HK(5)/UiO-66 possessed a specific surface area of 557.63 m2/g and showed an adsorption capacity of 400 mg/g, higher than that of UiO-66 (261.92 mg/g) with a contact time of 50 min. Several adsorption parameters that influenced RBBR removal efficiency were investigated, such as pH, initial dye concentrations, and temperature. All the composites followed pseudo-first order kinetics and Langmuir isotherm adsorption. Moreover, the adsorption process occurred exothermically and spontaneously, indicating that the adsorption process was advantageous in terms of energy. The possible adsorption mechanism and cost analysis of the adsorbent were also studied in detail.  相似文献   

13.
This study evaluated the feasibility of Rhodamine-B dye (Rh B) removal from aqueous solution, using Lead-Iron Oxide nanoparticles Loaded Activated Carbon (FePbO@AC). The parameters like pH, contact time, adsorbent/adsorbate dosage and temperature on adsorption was studied. Optimized conditions are pH of 7.0, 25?min contact time, 50?ppm of dye concentration and 200?mg of adsorbent concentration. The kinetics of adsorption was calculated using pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The calculations revealed that the pseudo-second-order kinetic equation best-fit the adsorption data. The Langmuir isotherm model best fit the equilibrium data. The maximum sorption capacity (Qmax) for dye is 1000?mg Rh B/g FePbO@AC. Change in entropy (ΔS), Gibb’s free energy change (ΔG), and enthalpy (ΔH) were calculated for the adsorption of Rh B dye.  相似文献   

14.
Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media.  相似文献   

15.
Two waste materials-bottom ash, a power plant waste, and de-oiled soya, an agricultural waste-are meticulously and successfully used as adsorbent for the removal and recovery of a hazardous triphenylmethane dye, Brilliant Blue FCF. Both the materials were characterized by chemical analysis, IR, DTA, SEM and XRD studies. Their physical characteristics like surface area, porosity, density and loss on ignition were also determined. The adsorption of the dye over both materials was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature, etc. conditions. For both the systems Langmuir and Freundlich adsorption isotherm models were applied and, based on these models, useful thermodynamic parameters were calculated. For both the adsorbents, the kinetic measurements indicate that the adsorption process follows first order kinetics and film diffusion and particle diffusion mechanisms are operative at lower and higher concentrations, respectively, in each case. By percolating the dye solution through fixed-bed columns the bulk removal of the Brilliant Blue FCF was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of Brilliant Blue FCF was made by eluting dilute NaOH of pH 11 through each column.  相似文献   

16.
The urgent need for fresh water resource is a public issue facing the world. Solar distillation for seawater desalination is a promising freshwater production method. Interfacial solar evaporation systems based on 2D photo-thermal membranes have been widely studied, but salt pollution is one of the main challenges for solar distillation. In order to solve this problem, a hydrophilic three-dimensional (3D) porous photo-thermal fiber felt (PFF) was obtained by one-step method, through a simple polydopamine (PDA) coating method with hydrophobic graphite felt as a substrate. The PFF had a good evaporation rate of 1.48 kg m?2 h-1 and its corresponding light-vapor conversion efficiency reached 87.4%. In addition, the PFF exhibited an excellent salt-resistant ability when applied to photo-thermal evaporation of high-salinity seawater with 10 wt% NaCl, owing to its intrinsic 3D macroporous structure for the migration circulation of salt ions. The development of the PFF offers a new route for the exploration of salt-resistant photo-thermal materials and is promising for the practical application of solar distillation.  相似文献   

17.
The removal of a carcinogenic dye rhodamine B (C. I. 45170) from wastewater by biomass of different moulds and yeasts is described. Among all of the fungal species tested, the biomass of Rhizopus oryzae MTCC 262 is found to be the most effective. Dye adsorption reaches maximum with the biomass harvested from the early stationary phase of growth. The optimum temperature and pH for adsorption are observed to be 40 degrees C and 7.0, respectively. The adsorption rate is very fast initially and attains equilibrium after 5 h. The adsorption isotherm follows the Langmuir isotherm model satisfactorily within the studied dye concentration range. Of the different metabolic inhibitors tested, 2,4-ditrophenol (DNP) and N,N'-dicyclohexylcarbodiimide (DCCD) decrease dye adsorption by approximately 30% suggesting the role of energy metabolism in the process. Spectrophotometric study indicates that the removal of rhodamine B by R. oryzae biomass involves an adsorption process. Scanning (SEM) and transmission (TEM) electron microscopic investigations have been carried out to understand the probable mechanism of the dye-biomass interaction.  相似文献   

18.
The sorptive potential of some lignocellulosic agro-industrial wastes (sunflower seed shells and corn cob) for Basic Blue 9 cationic dye removal from aqueous solutions was examined using the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models were used in order to determine the quantitative parameters of sorption. The Langmuir isotherm model indicated a maximum sorption capacity for these materials in the range of 40–50 mg dye per g (25°C), slightly higher for corn cob than for sunflower seed shells. The values of the thermodynamic parameters showed that the retention of cationic dye is a spontaneous and endothermic process. The application of pseudo-first order and pseudo-second order intraparticle diffusion models, and a Boyd — Reichenberg model for kinetic data interpretation suggested that sorption of Basic Blue 9 dye onto the studied materials is a process where both surface sorption and intraparticle diffusion contributed to the rate-limiting step. These lignocellulosic wastes can be used with good efficiency for dye removal from aqueous effluents.   相似文献   

19.
The potential of the agricultural waste garlic root to remove malachite green(MG) from aqueous solutions was evaluated. The adsorption of this dye onto garlic root was confirmed by means of Fourier transform infrared analysis(FTIR) and scanning electron microscopy(SEM). The equilibrium data fitted well into the Langmuir mo- del(R2>0.99), and the adsorption kinetics followed the pseudo-second-order equation(R2>0.99). The maximum adsorption capacities of MG onto the adsorbent were 172.41 and 232.56 mg/g with the addition of 1 and 2 g/L garlic root, respectively. The optimal conditions for MG removal were established on the basis of orthogonal experiments(OA16 matrix). The concentrations of both MG and garlic root significantly affected the removal efficiency. The acute toxicity test indicated that the treated MG solutions were less toxic than the parent solutions. These results suggest that garlic root is a potential low-cost adsorbent for removing dye from industrial wastewater.  相似文献   

20.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号