首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The structures, binding energies, and electronic properties of one oxygen atom (O) and two oxygen atoms (2O) adsorption on silicon clusters Si(n) with n ranging from 5 to 10 are studied systematically by ab initio calculations. Twelve stable structures are obtained, two of which are in agreement with those reported in previous literature and the others are new structures that have not been proposed before. Further investigations on the fragmentations of Si(n)O and Si(n)O2 (n = 5-10) clusters indicate that the pathways Si(n)O --> Si(n-1) + SiO and Si(n)O2 --> Si(n-2) + Si2O2 are most favorable from thermodynamic viewpoint. Among the studied silicon oxide clusters, Si8O, Si9O, Si5O2 and Si8O2 correspond to large adsorption energies of silicon clusters with respect to O or 2O, while Si8O, with the smallest dissociation energy, has a tendency to separate into Si7 + SiO. Using the recently developed quasi-atomic minimal-basis-orbital method, we have also calculated the unsaturated valences of the neutral Si(n) clusters. Our calculation results show that the Si atoms which have the largest unsaturated valences are more attractive to O atom. Placing O atom right around the Si atoms with the largest unsaturated valences usually leads to stable structures of the silicon oxide clusters.  相似文献   

2.
We have calculated the structural and energetic properties of neutral and ionic (singly charged anionic and cationic) semiconductor binary silicon-germanium clusters Si(m)Ge(n) for s = m + n ≤ 12 using the density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] methods with Pople's 6-311++G(3df, 3pd) basis set. Neutral and anionic clusters share similar ground state structures for s = 3-7, independent of the stoichiometry and atom locations, but start to deviate at s = 8. The relative energetic stability of the calculated ground state structures among possible isomers has been analyzed through a bond strength propensity model where the pair interactions of Si-Si, Si-Ge, and Ge-Ge are competing. Electron affinities, ionization potentials, energy gaps between the highest and lowest occupied molecular orbitals (HOMO-LUMO gaps), and cluster mixing energies were calculated and analyzed. Overall, for a fixed s, the vertical ionization potential increases as the number of silicon atoms m increases, while the vertical electron affinity shows a dip at m = 2. As s increases, the ionization potentials increase from s = 2 to s = 3 and then decrease slowly to s = 8. The mixing energies for neutral and ionic clusters are all negative, indicating that the binary clusters are more stable than pure elemental clusters. Except for s = 4 and 8, cationic clusters are more stable than anionic ones and, thus, are more likely to be observed in experiments.  相似文献   

3.
Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the structural and electronic structure of Si(n)C(n) (n=1-10) clusters. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster size n equals 4. Cagelike structures are favored as the cluster size increases. A distinct segregation between the silicon and carbon atoms is observed for these clusters. It is found that the C atoms favor to form five-membered rings as the cluster size n increases. However, the growth motif for Si atoms is not observed. The Si(n)C(n) clusters at n=2, 6, and 9 are found to possess relatively higher stability. On the basis of the lowest-energy geometries obtained, the size dependence of cluster properties such as binding energy, HOMO-LUMO gap, Mulliken charge, vibrational spectrum, and ionization potential has been computed and analyzed. The bonding characteristics of the clusters are discussed.  相似文献   

4.
Vibrational spectra of neutral silicon clusters Si(n), in the size range of n = 6-10 and for n = 15, have been measured in the gas phase by two fundamentally different IR spectroscopic methods. Silicon clusters composed of 8, 9, and 15 atoms have been studied by IR multiple photon dissociation spectroscopy of a cluster-xenon complex, while clusters containing 6, 7, 9, and 10 atoms have been studied by a tunable IR-UV two-color ionization scheme. Comparison of both methods is possible for the Si(9) cluster. By using density functional theory, an identification of the experimentally observed neutral cluster structures is possible, and the effect of charge on the structure of neutrals and cations, which have been previously studied via IR multiple photon dissociation, can be investigated. Whereas the structures of small clusters are based on bipyramidal motifs, a trigonal prism as central unit is found in larger clusters. Bond weakening due to the loss of an electron leads to a major structural change between neutral and cationic Si(8).  相似文献   

5.
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability.  相似文献   

6.
In the coordination, hypervalent and cluster chemistry, three important characteristic properties are the maximum coordination number, magic number, and core coordination number. Yet, few studies have considered these three numbers at the same time for an ML(n) cluster with n larger than 8. In this article, we systematically studied the three properties of SiLi(n) (n = 4-16) clusters at the B3LYP/6-31G(d), B3LYP/6-311++G(2d), and CCSD(T)/6-311++G(3df)//B3LYP/6-311++G(2d) (for energy only) levels. Various isomeric forms with different symmetries were calculated. For each SiLi(n) (n = 4-9), silicon cohesive energy (cE) from SiLi(n) --> Si + Li(n) reaction, vertical ionization potential (vIP), and vertical electron affinity (vEA) were obtained for the lowest-energy isomer. We found that the maximum Li-coordination number of Si is 9, which is the largest number among the known MLi(n) clusters. All cE, vIP, and vEA values predicted that 6 is the magic Li-coordination number of Si. For small SiLi(n) (n < or = 6) clusters, Li atoms favor direct coordination to Si, whereas for larger SiLi(n) (n > or = 7) clusters, there is a core cluster that is surrounded by excessive Li atoms. The core Li-coordination number is 6 for SiLi(n) (n = 7,8), 7 for SiLi(n) (n = 9,10), 8 for SiLi(n) (n = 11-15) and 9 for SiLi(n) (n > or = 16). Through the calculations, we verified the relationship between the structure and stability of SiLi(n) with the maximum coordination number, magic number, and core coordination number.  相似文献   

7.
Structures and relative stability of four families of low-lying silicon clusters in the size range of Sin(n=21-30) are studied, wherein two families of the clusters show prolate structures while the third one shows near-spherical structures. The prolate clusters in the first family can be assembled by connecting two small-sized magic clusters Sin (n=6, 7, 9, or 10) via a fused-puckered-hexagonal-ring Si9 unit (a fragment of bulk diamond silicon), while those in the second family can be constructed on the basis of a structural motif consisting of a puckered-hexagonal-ring Si6 unit (also a fragment of bulk diamond silicon) and a small-sized magic cluster Sin (n=6, 7, 9, or 10). For Si21-Si29, the predicted lowest-energy clusters (except Si27) exhibit prolate structures. For clusters larger than Si25, the third family of near-spherical clusters becomes energetically competitive. These near-spherical clusters all exhibit endohedral cagedlike structures, and the cages are mostly homologue to the carbon-fullerene cages which consist of pentagons and hexagons exclusively. In addition, for Si26-Si30, we construct a new (fourth) family of low-lying clusters which have "Y-shaped" three-arm structures, where each arm is a small-sized magic cluster (Si6, Si7, or Si10). Density-functional calculation with the B3LYP functional shows that this new family of clusters is also energetically competitive, compared to the two prolate and one near-spherical low-lying families.  相似文献   

8.
The geometric structures of neutral and cationic Si(n)Li(m)(0/+) clusters with n = 2-11 and m = 1, 2 are investigated using combined experimental and computational methods. The adiabatic ionization energy and vertical ionization energy (VIE) of Si(n)Li(m) clusters are determined using quantum chemical methods (B3LYP/6-311+G(d), G3B3, and CCSD(T)/aug-cc-pVxZ with x = D,T), whereas experimental values are derived from threshold photoionization experiments in the 4.68-6.24 eV range. Among the investigated cluster sizes, only Si(6)Li(2), Si(7)Li, Si(10)Li, and Si(11)Li have ionization thresholds below 6.24 eV and could be measured accurately. The ionization threshold and VIE obtained from the experimental photoionization efficiency curves agree well with the computed values. The growth mechanism of the lithium doped silicon clusters follows some simple rules: (1) neutral singly doped Si(n)Li clusters favor the Li atom addition on an edge or a face of the structure of the corresponding Si(n)(-) anion, while the cationic Si(n)Li(+) binds with one Si atom of the bare Si(n) cluster or adds on one of its edges, and (2) for doubly doped Si(n)Li(2)(0/+) clusters, the neutrals have the shape of the Si(n+1) counterparts with an additional Li atom added on an edge or a face of it, while the cations have both Li atoms added on edges or faces of the Si(n)(-) clusters.  相似文献   

9.
Photoelectron spectra of low temperature silicon doped gold cluster anions Au(n)Si(-) with n = 2-56 and silver cluster anions Ag(n)Si(-) with n = 5-82 have been measured. Comparing the spectra as well as the general size dependence of the electron detachment energies to the results on undoped clusters shows that the silicon atom changes the apparent free electron count in the clusters. In the case of larger gold clusters (with more than about 30 gold atoms) the silicon atom seems to consistently delocalize all of its four valence electrons, while in the case of the silver clusters a less uniform behavior is observed. Here the silicon atoms act partly as electron donors, partly as electron acceptors, without following an obvious simple principle. Additionally some structural information can be obtained from the measured spectra: while Ag(54)Si(-) seems to adopt an icosahedral structural motif, Au(54)Si(-) seems to take on a low symmetry structure, much like the corresponding pure 55 atom clusters. This indicates that for such larger clusters the incorporation of a single silicon atom does not change the ground state geometry significantly.  相似文献   

10.
Zdetsis AD 《Inorganic chemistry》2008,47(19):8823-8829
The aromatic, bonding, and structural characteristics of the Si 4C 2H 2-C 2B 4H 6, Si 2C 4H 4-C 4B 2H 6, and other Si n C 2H 2-C 2B n H n+2 ( n = 1, 2, 3, 5) isovalent pairs are studied using density functional theory (DFT) and coupled cluster methods to fully illustrate the homology of the two species. This homology, which is based on the replacement of the carborane B-H units by isovalent Si atoms, is extended to all three characteristics (structural, electronic, and aromatic) and includes all three lowest-energy structures of the isovalent pairs. This type of "boron connection", which has been tested for silicon clusters recently, seems to be a valid and extremely useful concept. For the aromatic properties of the Si n C 2H 2-C 2B n H n+2 species, expressed through the nucleus independent chemical shifts (NICS), a strange odd-even effect with respect to the number of Si atoms is observed which seems rather difficult to explain. To help possible future identification and characterization of the Si n C 2H 2 clusters, their infrared, Raman, and optical excitation spectra are calculated within the framework of DFT, using the 6-311+G(2d, p) basis set. It is expected that the present results would facilitate the exploitation of the well-known carborane and metallacarborane chemical properties and applications for the design and development of novel silicon-carbon-based composite materials.  相似文献   

11.
Ground-state structures, vibrational frequencies, HOMO-LUMO energy gap, electron affinities, and cluster mixing energy of binary semiconductor clusters SimGen in the range s = m + n 相似文献   

12.
A theoretical investigation on small silicon-doped lithium clusters Li(n)Si with n = 1-8, in both neutral and cationic states is performed using the high accuracy CCSD(T)/complete basis set (CBS) method. Location of the global minima is carried out using a stochastic search method and the growth pattern of the clusters emerges as follows: (i) the species Li(n)Si with n ≤ 6 are formed by directly binding one Li to a Si of the smaller cluster Li(n-1)Si, (ii) the structures tend to have an as high as possible symmetry and to maximize the coordination number of silicon. The first three-dimensional global minimum is found for Li(4)Si, and (iii) for Li(7)Si and Li(8)Si, the global minima are formed by capping Li atoms on triangular faces of Li(6)Si (O(h)). A maximum coordination number of silicon is found to be 6 for the global minima, and structures with higher coordination of silicon exist but are less stable. Heats of formation at 0 K (Δ(f)H(0)) and 298 K (Δ(f)H(298)), average binding energies (E(b)), adiabatic (AIE) and vertical (VIE) ionization energies, dissociation energies (D(e)), and second-order difference in total energy (Δ(2)E) of the clusters in both neutral and cationic states are calculated from the CCSD(T)/CBS energies and used to evaluate the relative stability of clusters. The species Li(4)Si, Li(6)Si, and Li(5)Si(+) are the more stable systems with large HOMO-LUMO gaps, E(b), and Δ(2)E. Their enhanced stability can be rationalized using a modified phenomenological shell model, which includes the effects of additional factors such as geometrical symmetry and coordination number of the dopant. The new model is subsequently applied with consistency to other impure clusters Li(n)X with X = B, Al, C, Si, Ge, and Sn.  相似文献   

13.
The TaSi(n) (n=1-13) clusters with doublet, quartet, and sextet spin configurations have been systematically investigated by a relativistic density functional theory with the generalized gradient approximation available in Amsterdam density functional program. The total bonding energies, equilibrium geometries, Mulliken populations as well as Hirshfeld charges of TaSi(n) (n=1-13) clusters are calculated and presented. The emphasis on the stabilities and electronic properties is discussed. The most stable structures of the small TaSi(n) (n=1-6) clusters and the evolutional rule of low-lying geometries of the larger TaSi(n) (n=7-13) clusters are obtained. Theoretical results indicate that the most stable structure of TaSi(n) (n=1-6) clusters keeps the similar framework as the most stable structure of Si(n+1) clusters except for TaSi(3) cluster. The Ta atom in the lowest-energy TaSi(n) (n=1-13) isomers occupies a gradual sinking site, and the site moves from convex, to flatness, and to concave with the number of Si atom varying from 1 to 13. When n=12, the Ta atom in TaSi(12) cluster completely falls into the center of the Si frame, and a cagelike TaSi(12) geometry is formed. Meanwhile, the net Mulliken and Hirsheld populations of the Ta atom in the TaSi(n) (n=1-13) clusters vary from positive to negative, manifesting that the charges in TaSi(n) (n>/=12) clusters transfer from Si atoms to Ta atom. Additionally, the contribution of Si-Si and Si-Ta interactions to the stability of TaSi(n) clusters is briefly discussed. Furthermore, the investigations on atomic averaged binding energies and fragmentation energies show that the TaSi(n) (n=2,3,5,7,10,11,12) clusters have enhanced stabilities. Compared with pure silicon clusters, a universal narrowing of highest occupied molecular orbital-lowest unoccupied molecular orbital gap in TaSi(n) clusters is found.  相似文献   

14.
The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of Si(n)M(+) (n = 4-11 for M = V, and n = 6-11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding Si(n)M(+)·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si(9)Cu(+), Si(11)Cu(+), and Si(10)V(+), the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal's 3d orbitals in the binding of the dopant atoms.  相似文献   

15.
The geometric and electronic structures of Si(n), Si(n)-, and PSi(n-1) clusters (2 < or = n < or = 13) have been investigated using the ab initio molecular orbital theory formalism. The hybrid exchange-correlation energy functional (B3LYP) and a standard split-valence basis set with polarization functions (6-31+G(d)) were employed to optimize geometrical configurations. The total energies of the lowest energy isomers thus obtained were recalculated at the MP2/aug-cc-pVTZ level of theory. Unlike positively charged clusters, which showed similar structural behavior as that of neutral clusters [Nigam et al., J. Chem. Phys. 121, 7756 (2004)], significant geometrical changes were observed between Si(n) and Si(n)- clusters for n = 6, 8, 11, and 13. However, the geometries of P substituted silicon clusters show similar growth as that of negatively charged Si(n) clusters with small local distortions. The relative stability as a function of cluster size has been verified based on their binding energies, second difference in energy (Delta2 E), and fragmentation behavior. In general, the average binding energy of Si(n)- clusters is found to be higher than that of Si(n) clusters. For isoelectronic PSi(n-1) clusters, it is found that although for small clusters (n < 4) substitution of P atom improves the binding energy of Si(n) clusters, for larger clusters (n > or = 4) the effect is opposite. The fragmentation behavior of these clusters reveals that while small clusters prefer to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size. The adiabatic electron affinities of Si(n) clusters and vertical detachment energies of Si(n)- clusters were calculated and compared with available experimental results. Finally, a good agreement between experimental and our theoretical results suggests good prediction of the lowest energy isomeric structures for all clusters calculated in the present study.  相似文献   

16.
多体展开势能函数研究表明,Si4-Si16原子簇分子间的结构衍生关系为:依次增加一个二配位或三配位的表面原子,分子表面被四元蝶形环Si4(D2d)所覆盖;Sin(n=5-16)结构中多含有Si5(D3h)、Si6(D2d)区域结构单元,笼状Si10及Si16的表面原子均为三配位或三配位以上,预计Si5、Si6、Si10及Si16是硅原子簇碎片化产物分布中丰度较高的序列;在这一范围内的分子结构呈与晶体硅结构(金刚石)无关的密堆积,最高配位数为5,在小于半球的立体角内形成六配位的硅中心,使该簇合物在能量上不稳定。  相似文献   

17.
The magic number silica clusters [(SiO(2))(n)O(2)H(3)](-) with n = 4 and 8 have been observed in the XeCl excimer laser (308 nm) ablation of various porous siliceous materials. The structural origin of the magic number clusters has been studied by the density functional theoretical calculation at the B3LYP/6-31G** level, with a genetic algorithm as a supplementary tool for global structure searching. The DFT results of the first magic number cluster are parallel to the corresponding Hartree-Fock results previously reported with only small differences in the structural parameters. Theoretical calculation predicts that the first magic number cluster (SiO(2))(4)O(2)H(4) and its anion [(SiO(2))(4)O(2)H(3)](-) will most probably take pseudotetrahedral cage-like structures. To study the structural properties of the second magic number cluster, geometries of the bare cluster (SiO(2))(8), the neutral complex cluster (SiO(2))(8)O(2)H(4), and the anionic cluster [(SiO(2))(8)O(2)H(3)](-) are fully optimized at the B3LYP/6-31G** level, and the corresponding vibrational frequencies are calculated. The DFT calculations predict that the ground state of the bare silica octamer (SiO(2))(8) has a linear chain structure, whereas the second magic number complex cluster (SiO(2))(8)O(2)H(4) and its anion [(SiO(2))(8)O(2)H(3)](-) are most probably a mixture of cubic cage-like structural isomers with an O atom inside the cage and several quasi-bicage isomers with high intercage interactions. The stabilization of these structures can also be attributed to the active participation of the group of atoms 2O and 4H (3H for the anion) in chemical bonding during cluster formation. Our theoretical calculation gives preliminary structural interpretation of the presence of the first and second magic number clusters and the absence of higher magic numbers.  相似文献   

18.
Hydrothermal reactions between incomplete cuboidal cluster aqua complexes [M3Q4(H2O)9]4+ and M(CO)6 (M = Mo, W; Q = S, Se) offer easy access to the corresponding cuboidal clusters M4Q4. The complete series of homometal and mixed Mo/W clusters [Mo(x)W4-xQ4(H2O)12]n+ (x = 0-4, n = 4-6) has been prepared. Upon oxidation of the mixed-metal clusters, it is the W atom which is lost, allowing selective preparation of new trinuclear clusters [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+. The aqua complexes were converted by ligand exchange reactions into dithiophosphato and thiocyanato complexes, and crystal structures of [W4S4((EtO)2PS2)6], [MoW3S4((EtO)2PS2)6], [Mo4Se4((EtO)2PS2)6], [W4Se4((i-PrO)2PS2)6], and (NH4)6[W4Se4(NCS)12]-4H20 were determined. Cyclic voltammetry was performed on [Mo(x)W4-xCO4(H2O)12]n+, showing reversible redox waves 6+/5+ and 5+/4+. The lower oxidation states are more difficult to access as the number of W atoms increases. The [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+ species were derivatized into [Mo2WSe4(acac)3(py)3]+ and [MoW2Se4(acac)3(py)3]+, which were also studied by CV. When appropriate, the products were also characterized by FAB-MS and NMR (31P, 1H) data.  相似文献   

19.
Electronic properties of silicon and germanium atom doped indium clusters, In(n)Si(m) and In(n)Ge(m), were investigated by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of the anions. Size dependence of ionization energy and electron affinity for In(n)Si(1) and In(n)Ge(1) exhibit pronounced even-odd alternation at cluster sizes of n = 10-16, as compared to those for pure In(n) clusters. This result shows that symmetry lowering with the doped atom of Si or Ge results in undegeneration of electronic states in the 1d shell formed by monovalent In atoms.  相似文献   

20.
The structural and electronic characteristics of the Si(n)C(2)H(2), n=3,4,5, clusters are studied by ab initio calculations based on coupled cluster and density functional theory using the hybrid B3LYP functional. It is demonstrated that all three clusters are structurally and electronically homologous to the corresponding isoelectronic organometallic carboranes C(2)B(n)H(n+2). This homology, which is in full agreement with the analogy of Si(6) (2-) and B(6)H(6) (2-) demonstrated recently by the author [J. Chem. Phys. 127, 014314 (2007)], includes not only the ground states but also the lower-lying isomers as well. These lowest lying isomers can be obtained by ortho, para, and meta substitutions from the corresponding Si(n) (2-), n=3,4,5, dianions. The energetic ordering of the low-lying isomers is in full agreement with the known valence and topological charge stability rules developed for carboranes. The hydrogenated clusters are much more stable than their nonhydrogenated counterparts. It is suggested that Si(3)C(2)H(2), Si(4)C(2)H(2), and Si(5)C(2)H(2), which can be probably found in interstellar space, are special examples of a general class of silicon-carbon clusters of the form Si(n)C(2)H(2), with analogous properties and similarities to the corresponding carboranes C(2)B(n)H(n+2). It is furthermore illustrated that the lowest energy structures of the Si(n)C(2) clusters can be obtained through a systematic and straightforward procedure from the Si(n)C(2)H(2) clusters. The present results could hopefully make possible the exploitation of the rich borane and carborane chemistry for the design and development of novel silicon and silicon-carbon composite nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号