首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
The reactions of [Li(2)[PhB(N(t)Bu)(2)]](2) with GaCl(3) in various stoichiometries yield [Li(thf)(4)][PhB(mu-N(t)Bu)(2)GaCl(2) x GaCl(3)] (1), [PhB(mu-N(t)Bu)(2)GaCl](2) (2), and [mu-Li(OEt(2))[PhB(N(t)Bu)(2)]Ga] (3a), a series of complexes in which the three chloride ligands are successively replaced by the dianion [PhB(N(t)Bu)(2)](2-). The X-ray structures of 1, 2, and 3a show that the boraamidinate ligand adopts an N,N'-chelating mode. In the ion-separated complex 1, one of the nitrogen atoms is coordinated to a GaCl(3) molecule. The related indium complexes [mu-LiCl(thf)(2)][PhB(mu-N(t)Bu)(2)InCl](2) (4) and [mu-Li(OEt(2))[PhB(mu-N(t)Bu)(2)]In] (3b) were obtained in a similar manner. Complex 4 is the indium analogue of 2 with the incorporation of a bissolvated LiCl molecule. In 3a and 3b the spirocyclic [[PhB(mu-N(t)Bu)(2)](2)M](-) (M = Ga, In) anions are N,N'-chelated to the [Li(OEt(2))](+) counterion. Prolonged reactions result in the formation of [PhB(mu-N(t)Bu)(2)GaCl][(t)BuN(H)GaCl(2)] (5) and [[PhB(mu-N(t)Bu)(2)InCl][(t)BuN(H)InCl(2)][mu-LiCl(OEt(2))(2)]] (6), respectively. The X-ray structures of 5 and 6 reveal bicyclic structures which formally involve the entrapment of the monomers (t)BuN(H)MCl(2) by a four-membered BN(2)M ring (M = Ga, In). The synthesis and X-ray structure of Cl(2)Ga[mu-N(H)(t)Bu](2)GaCl(2) are also reported.  相似文献   

2.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

3.
Reactions of lithium dialkyl/phenyl phosphanylmethylides, RR'PCH(X)Li (R, R' = Me, Et, Ph and R = Me, R' = Ph; X = H or Me), with sulfur diimides S(NR')2 (R' = (t)Bu or SiMe3) in an equimolar ratio yielded Janus head complexes with the structural motif [Li{RR'PCH(X)S(NR')2}]2 (R' = (t)Bu, SiMe3). The basic core of these dimeric complexes is composed of a (LiN)(2) four-membered ring containing two four-coordinated lithium atoms. A lithium complex of the new Janus head ligand with another structural motif [TMEDA·Li{Ph(2)PCH(2)S(NSiMe3)2}] (6) could be isolated from the reaction of [Ph2PCH2Li·TMEDA] with S(NSiMe3)2. Two monomeric complexes [Mg{Me2PCH2S(NR')2}2] (7, 8) were synthesised by a straightforward reaction of [Li{Me2PCH2S(NR')2}2] with MgCl2 in pentane. The magnesium atom is chelated by one phosphorus atom and two nitrogen atoms of each unit of the hemilabile ligand in a tripodal manner, leading to octahedral geometry around the magnesium cation. A complete analysis of [Ph2PCH2(SNSiMe3)(HNSiMe3)] (9) is also described in which one nitrogen atom of the imido moiety is protonated.  相似文献   

4.
A series of germylene, stannylene and plumbylene complexes [η(2)(N,N)-Me(2)Si(DippN)(2)Ge:] (3a), [η(2)(N,N)-Ph(2)Si(DippN)(2)Ge:] (3b), [η(2)(N,N)-Me(2)Si(DippN)(2)Sn:] (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Pb:](2) (5a), and [η(2)(N,N)-Ph(2)Si(DippN)(2)Pb:] (5b) (Dipp = 2,6-iPr(2)C(6)H(3)) bearing bulky bis(amido)silane ligands were readily prepared either by the transamination of M[N(SiMe(3))(2)](2) (M = Sn, Pb) and [Me(2)Si(DippNH)(2)] or by the metathesis reaction of bislithium bis(amido)silane [η(1)(N),η(1)(N)-R(2)Si(DippNLi)(2)] (R = Me, Ph) with the corresponding metal halides GeCl(2)(dioxane), SnCl(2), and PbCl(2), respectively. Preliminary atom-transfer chemistry involving [η(2)(N,N)-Me(2)Si(DippN)(2)Ge:] (3a) with oxygen yielded a dimeric oxo-bridged germanium complex [η(2)(N,N)-Me(2)Si(DippN)(2)Ge(μ-O)](2) (6). All complexes were characterized by (1)H, (13)C, (119)Sn NMR, IR, and elemental analysis. X-ray single crystal diffraction analysis revealed that the metal centres in 3b, 4, and 5b are sterically protected to prevent interaction between the metal centre and the nitrogen donors of adjacent molecules while complex 5a shows a dimeric feature with a strong intermolecular Pb···N interaction.  相似文献   

5.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

6.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

7.
The reactions of MCl3 with Li2[PhB(NtBu)2] in 1:1, 1:1.5, and 1:2 molar ratios in diethyl ether produced the monoboraamidinates ClM[PhB(NtBu)2] (1a, M = As; 1b, M = Sb; 1c, M = Bi), the novel 2:3 boraamidinate complexes [PhB(NtBu)2]M-micro-N(tBu)B(Ph)N(tBu)M[PhB(NtBu)2] (2b, M = Sb; 2c, M = Bi), and the bisboraamidinates LiM[PhB(NtBu)2]2 (3a, 3a.OEt2, M = As; 3b, M = Sb; 3c.OEt2, M = Bi), respectively. The 2:3 complexes 2b and 2c were also observed in the reactions carried out in a 1:2 molar ratio at room temperature. All complexes have been characterized by multinuclear NMR spectroscopy (1H, 7Li, 11B, and 13C) and by single-crystal X-ray structural determinations. The molecular units of the mono-boraamidinates 1a-c are isostructural, but their crystal packing is distinct as a result of stronger intermolecular close contacts going from 1a to 1c. In the novel 2:3 bam complexes 2b and 2c, each metal center is N,N'-chelated by a bam ligand and these two [M(bam)]+ units are bridged by the third [bam]2- ligand. The structures of the unsolvated bis-boraaminidate complexes 3a and 3b consist of [Li(bam)]- and [M(bam)]+ monomeric units linked by Li-N and M-N bonds to give a tricyclic structure. Solvation of the Li+ ion by diethyl ether results in a bicyclic structure composed of four-membered BN2As and six-membered BN3AsLi rings in 3a.OEt2. In contrast, the analogous bismuth complex 3c.OEt2 exhibits a tetracyclic structure. Variable-temperature NMR studies reveal that the nature of the fluxional behavior of 3a-c in solution is dependent on the group 15 center.  相似文献   

8.
This paper reports calculations that probe the role of R (hydrocarbon) and R' (ligand substituent) effects on the reaction coordinate for C [bond] H activation: Ti(OR')(2)(=NR') + RH --> adduct --> transition state --> (OR')(2)Ti(N(H)R')(R). Compounds with R = H, Me, Et, Vy, cPr, Ph, Cy, Bz, and cubyl are studied using quantum (R' = H, SiH(3), SiMe(3)) and classical (R' = Si(t)Bu(3)) techniques. Calculated geometries are in excellent agreement with data for experimental models. There is little variability in the calculated molecular structure of the reactants, products, and most interestingly, transition states as R and R' are changed. Structural flexibility is greatest in the adducts Ti(OR')(2)(=NR')...HR. Despite the small structural changes observed for Ti(OR')(2)(double bond] NR') with different R', significant changes are manifested in calculated electronic properties (the Mulliken charge on Ti becomes more positive and the Ti [double bond] N bond order decreases with larger R'), changes that should facilitate C [bond] H activation. Substantial steric modification of the alkane complex is expected from R [bond] R' interactions, given the magnitude of Delta G(add) and the conformational flexibility of the adduct. Molecular mechanics simulations of Ti(OSi(t)Bu(3))(2)([double bond] NSi(t)Bu(3))...isopentane adducts yield an energy ordering as a function of the rank of the C [bond] H bond coordinated to Ti that is consistent with experimental selectivity patterns. Calculated elimination barriers compare very favorably with experiment; larger SiH(3) and TMS ligand substituents generally yield better agreement with experiment, evidence that the modeling of the major contributions to the elimination barrier (N [bond] H and C [bond] H bond making) is ostensibly correct. Calculations indicate that weakening the C [bond] H bond of the hydrocarbon yields a more strongly bound adduct. Combining the different conclusions, the present computational research points to the adduct, specifically the structure and energetics of the substrate/Ti-imido interaction, as the main factor in determining the selectivity of hydrocarbon (R) C [bond] H activation.  相似文献   

9.
The lithium (imido)diphosphineimide Li(Et2O)[DippNPhP-P((n)Bu)PhNDipp] (1) (Dipp = 2,6-(i)Pr2C6H3) undergoes simple metathesis reactions with equimolar amounts of zinc halides, ZnCl2 and (t)BuZnBr, to give the respective N,N'-chelated complexes {Zn(micro-Cl)[DippNPhP-P((n)Bu)PhNDipp]}2 (2) and (t)BuZn[NDippPhP-P((n)Bu)PhNDipp] (3). In contrast, the reaction of two equivalents of complex 1 with HgCl2 affords the rearranged bis(imidodiphosphinoamine) complex, Hg[PhP([double bond, length as m-dash]NDipp)(micro-NDipp)P((n)Bu)Ph]2 (4), where the ligand acts as a P-centered anion. The (imido)diphosphineimide backbone of remains intact on oxidation with elemental sulfur to afford the lithium (imido)diphosphineimine sulfide complex, Li(Et2O)[DippNPhP(S)-P((n)Bu)PhNDipp] (6). Reactions of 6 with group 12 metal halides show similar behaviour to those of complex 1. The N,N' chelated metathesis products RZn[DippNPhP(S)-P((n)Bu)PhNDipp] (7, R = Cl; 8, R = (t)Bu) are obtained on reaction with ZnCl2 and (t)BuZnBr, respectively. Isomerization of the ligand backbone occurs on reaction of 6 with HgCl2 to form the homoleptic P,S-chelated mercury complex Hg[Ph(S)P(=NDipp)(micro-NDipp)P((n)Bu)Ph]2 (9). Complexes 2, 3, 4, 6, 8 and 9 have been characterized by X-ray crystallography.  相似文献   

10.
2-Aminomethylaniline was converted into the N,N'-bis(pivaloyl) (1) or -bis(trimethylsilyl) (2) derivative, using 2 Bu(t)C(O)Cl or 2 Me(3)SiCl (≡ RCl), respectively, with 2 NEt(3), or for 2 from successively using 2 LiBu(n) and 2 RCl. N,N'-Bis(neopentyl)-2-(aminomethyl)aniline (3) was prepared by LiAlH(4) reduction of 1. From 2 or 3 and 2 LiBu(n), the appropriate dilitiodiamide {2-[{N(Li)R}C(6)H(4){CH(2)N(Li)R}(L)](2) (L absent, 4a; or L = THF, 4b) or the N,N'-bis(neopentyl) analogue (5) of 4a was prepared. Treatment of 4a with 2 Bu(t)NC, 2 (2,6-Me(2)C(6)H(3)NC) or 2 Bu(t)CN (≡ L') furnished the corresponding adduct [2-N{Li(L')R}C(6)H(4){CH(2)N(Li)R}] (4c, 4d or 4e, respectively), whereas 4b with 2 PhCN afforded [2-{N(Li)R}C(6)H(4){CH(2)C(Ph) = NLi(NCPh)}] (6). The dimeric bis(amido)stannylene [Sn{N(R)C(6)H(4)(CH(2)NR)-1,2}](2) (7) was obtained from 4a and [Sn(μ-Cl)NR(2)](2), while the N,N'-bis(neopentyl) analogue 8 of 7 was similarly derived from [Sn(μ-Cl)NR(2)](2) and 5. Reaction of two equivalents of the diamine 2 with Pb(NR(2))(2) yielded 9, the lead homologue of 7. Oxidative addition of sulfur to 7 led to the dimeric bis(diamido)tin sulfide 10. Treatment of 2 successively with 'MgBu(2)' in C(5)H(12) and THF gave [Mg{N(R)C(6)H(4)(CH(2)NR)}(THF)](2) (11a), which by displacement of its THF by an equivalent portion of Bu(t)CN or PhCN produced [Mg{N(R)C(6)H(4)(CH(2)NR)}(CNR')(n)] [R' = Bu(t), n = 1 (11b); R' = Ph, n = 2 (11c)]. The Ca (12), Sr (13) or Ba (14) analogues of the Mg compound 11a were isolated from 2 and either the appropriate compound M(NR(2))(2) (M = Ca, Sr, Ba), or successively 2 LiBu(n) and 2 M(OTos)(2). The new compounds 1-14 were characterized by microanalysis (C, H, N; not for 1, 2, 3, 5), solution NMR spectra, ν(max) (C≡N) (IR for 4c, 4d, 4e, 6, 11b, 11c), selected EI-MS peaks (for 1, 2, 3, 7, 8, 9, 10), and single crystal X-ray diffraction (for 4a, 4b, 11a).  相似文献   

11.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

12.
Antimony(III) complexes of the general type LSbF(2) (3: L(1) =[tBuC(NiPr)(2)]; 4: L(2) =[tBuC(NDipp)(2) , Dipp=2,6-iPr(2)C(6)H(3)) and LSb(N(3))(2) (6: L(1); 7: L(2)) were prepared in high yields and characterized by elemental analyses, NMR and IR spectroscopy and single-crystal X-ray diffraction. Moreover, the solid-state structures of [L(2)SbF(2)][L(2)Li] (5), [L(2) AlH(2)] (1), and [L'H][L'K(thf)(3)] (2; L'=HC(NDipp)(2)) are described, in which the Li (5) and K atoms (2) adopt rather unusual coordination modes.  相似文献   

13.
The synthesis and reactivity of a series of complexes of the (DippN=)(3)Re (Dipp = 2,6-(i)Pr(2)C(6)H(3)) fragment are reported. The anionic, Re(V) complex (THF)(2)Li(micro,micro-NDipp)(2)Re(=NDipp) (1), prepared by the reaction of (DippN=)(3)ReCl with (THF)(3)LiSi(SiMe(3))(3) or (t)BuLi (2 equiv) in the presence of THF (4 equiv), served as an important starting material for the synthesis of rhenium-element-bonded complexes. For example, treatment of 1 with ClSiR(3) gave the corresponding silyl complexes (DippN=)(3)ReSiR(3) (SiR(3) = SiMe(3) (2a), SiHPh(2) (2b), SiH(2)Ph (2c)). Complexes 2a-c are thought to exist in equilibrium between the Re(VII) (DippN=)(3)ReSiR(3) and Re(V) (DippN=)(2)ReN(SiR(3))Dipp isomers. Complexes 2a,b reacted with PhSiH(3) to give reaction mixtures that included 2c, Ph(2)SiH(2), SiH(4), and C(6)H(6). The silane and organic products arise from Si-C bond formation and cleavage. Treatment of 2a with CO gave (DippN=)(2)Re[N(SiMe(3))Dipp](CO) (3), which appears to result from trapping of the reactive Re(V) isomer of 2a by CO. Complex 1 reacted with the main group halides MeI, Ph(3)GeCl, Me(3)SnCl, Ph(2)PCl, and PhSeCl to give the corresponding rhenium complexes (DippN=)(3)ReER(n) (ER(n)() = Me (4), GePh(3) (5), SnMe(3) (6), PPh(2) (7), SePh (8)) in high yields. X-ray diffraction data for 5 indicate that the germyl ligand is bonded to rhenium, but positional disorder of the phenyl and Dipp groups prevented refinement of accurate metric parameters.  相似文献   

14.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

15.
DFT calculations for the group 15 radicals [PhB(mu-N(t)Bu)2]2M. (M = P, As, Sb, Bi) predict a pnictogen-centered SOMO with smaller contributions to the unpaired spin density arising from the nitrogen and boron atoms. The reactions of Li 2[PhB(mu-NR)2] (R = (t)Bu, Dipp) with PCl 3 afforded the unsolvated complex LiP[PhB(mu-N(t)Bu)2] 2 ( 1a) in low yield and ClP[PhB(mu-NDipp)2] (2), both of which were structurally characterized. Efforts to produce the arsenic-centered neutral radical, [PhB(mu-N (t) Bu) 2] 2As., via oxidation of LiAs[PhB(mu-N(t)Bu)2]2 with one-half equivalent of SO 2Cl 2, yielded the Zwitterionic compound [PhB(mu-N (t) Bu) 2As(mu-N(t)Bu)2B(Cl)Ph] (3) containing one four-coordinate boron center with a B-Cl bond. The reaction of 3 with GaCl3 produced the ion-separated salt, [PhB(mu-N(t)Bu)2] 2As (+)GaCl 4 (-) ( 4), which was characterized by X-ray crystallography. The reduction of 3 with sodium naphthalenide occurred by a two-electron process to give the corresponding anion [{PhB(mu-N(t)Bu)2} 2As] (-) as the sodium salt. Voltammetric investigations of 4 and LiAs[PhB(mu-N (t) Bu) 2] 2 ( 1b) revealed irreversible processes. Attempts to generate the neutral radical [PhB(mu-N(t)Bu)2] 2As. from these ionic complexes via in situ electrolysis did not produce an EPR-active species.  相似文献   

16.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

17.
In the solid state, OP[N(H)Me](3) (1a) and OP[N(H)(t)Bu](3) (1b) have hydrogen-bonded structures that exhibit three-dimensional and one-dimensional arrays, respectively. The lithiation of 1b with 1 equiv of (n)BuLi generates the trimeric monolithiated complex (THF)[LiOP(N(t)Bu)[N(H)(t)Bu](2)](3) (4), whereas reaction with an excess of (n)BuLi produces the dimeric dilithium complex [(THF)(2)Li(2)OP(N(t)Bu)(2)[N(H)(t)Bu]](2) (5). Complex 4 contains a Li(2)O(2) ring in an open-ladder structure, whereas 5 embraces a central Li(2)O(2) ring in a closed-ladder arrangement. Investigations of the lithiation of tris(alkyl or arylamido)thiophosphates, SP[N(H)R](3) (2a, R = (i)Pr; 2b, R = (t)Bu; 2c, R = p-tol) with (n)BuLi reveal interesting imido substituent effects. For the alkyl derivatives, only mono- or dilithiation is observed. In the case of R = (t)Bu, lithiation is accompanied by P-S bond cleavage to give the dilithiated cyclodiphosph(V/V)azane [(THF)(2)Li(2)[((t)BuN)(2)P(micro-N(t)Bu)(2)P(N(t)Bu)(2)]] (9). Trilithiation occurs for the triaryl derivatives EP[N(H)Ar](3) (E = S, Ar = p-tolyl; E = Se, Ar = Ph), as demonstrated by the preparation of [(THF)(4)Li(3)[SP(Np-tol)(3)]](2) (10) and [(THF)(4)Li(3)[SeP(NPh)(3)]](2) (11), which are accompanied by the formation of small amounts of 10.[LiOH(THF)](2) and 11.Li(2)Se(2)(THF)(2), respectively.  相似文献   

18.
The following crystalline, X-ray-characterised heterometallic oligomeric diamides have been prepared in good yield under mild conditions in diethyl ether from the dilithio or disodio derivative of the N,N'-dineopentyl-1,2-diaminobenzene [{N(H)(CH2Bu(t))}2C6H4-1,2] (abbreviated as H2L):[Y(L)(mu-Cl)2Li(OEt2)2]2 (1), [Li(OEt2)2Li(mu2-Cl)4(mu3-Cl)2{Zr(L)}2]2 (2), [Zr(L)2(mu-Cl){Li(OEt2)2}(mu2-Cl)2Zr(L)] (3), [Ce{(mu-L)M}3(OEt2)(1/2)] (3M = Li(1.82)Na(1.18)) (4), [Ce{(mu-L)Na}3(OEt2)] (5) and [Ce{(mu-L)Na}3] (6). Compounds 1-3 were obtained from Li2(L) and YCl3 (the colourless 1) or ZrCl4 (the red 2 and 3), while the red 4 and 5 were isolated from CeCl3 and M2(L) (3M = Li(1.82)Na(1.18)) (4) or Na2(L) (5). Attempted oxidation of 5 with Br2 in hexane yielded the black 6. The ligand is N,N'-chelating to each of the d- or f-block metals in 1-6; and in 4-6 L is also acting as a bridge between Ce and the alkali metal, to which L is thus also chelating.  相似文献   

19.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

20.
Reactions of imido complexes [M(Cp)(=NR')(PR'3)2] (M=V, Nb) with silanes afford a plethora of products, depending on the nature of the metal, substitution at silicon and nitrogen and the steric properties of the phosphine. The main products are [M(Cp)(=NR')(PR3)(H)(SiRnCl3-n)] (M=V, Nb; R'=2,6-diisopropylphenyl (Ar), 2,6-dimethylphenyl (Ar')), [Nb(Cp)(=NR')(PR'3)(H)(SiPhR2)] (R2=MeH, H2), [Nb(Cp)(==NR')(PR'3)(Cl)(SiHRnCl2-n)] and [Nb(Cp)(eta 3-N(R)SiR2--H...)(PR'3)(Cl)]. Complexes with the smaller Ar' substituent at nitrogen react faster, as do more acidic silanes. Bulkier groups at silicon and phosphorus slow down the reaction substantially. Kinetic NMR experiments supported by DFT calculations reveal an associative mechanism going via an intermediate N-silane adduct [Nb(Cp){=N(-->SiHClR2)R'}(PR'3)2] bearing a penta-coordinate silicon centre, which then rearranges into the final products through a Si--H or Si--Cl bond activation process. DFT calculations show that this imido-silane adduct is additionally stabilized by a Si--HM agostic interaction. Si--H activation is kinetically preferred even when Si--Cl activation affords thermodynamically more stable products. The niobium complexes [NbCp(=NAr)(PMe3)(H)(SiR2Cl)] (R=Ph, Cl) are classical according to X-ray studies, but DFT calculations suggest the presence of interligand hypervalent interactions (IHI) in the model complex [Nb(Cp) (==NMe)(PMe3)(H)(SiMe2Cl)]. The extent of Si--H activation in the beta-Si--HM agostic complexes [Cp{eta 3-N(R')SiR2--H}M(PR'3)(Cl)] (R'=PMe3, PMe2Ph) primarily depends on the identity of the ligand trans to the Si--H bond. A trans phosphine leads to a stronger Si--H bond, manifested by a larger J(Si--H) coupling constant. The Si--H activation diminishes slightly when a less basic phosphine is employed, consistent with decreased back-donation from the metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号