首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study properties of the polynomials φk(X) which appear in the formal development Πk ? 0n (a + bXk)rk = Σk ≥ 0φk(X) ar ? kbk, where rkl and r = Σrk. this permits us to obtain the coefficients of all cyclotomic polynomials. Then we use these properties to expand the cyclotomic numbers Gr(ξ) = Πk = 1p ? 1 (a + k)kr, where p is a prime, ξ is a primitive pth root of 1, a, bl and 1 ≤ rp ? 3, modulo powers of ξ ? 1 (until (ξ ? 1)2(p ? 1) ? r). This gives more information than the usual logarithmic derivative. Suppose that p ? ab(a + b). Let m = ?ba. We prove that Gr(ξ) ≡ cp mod p(ξ ? 1)2 for some cl, if and only if Σk = 1p ? 1kp ? 2 ? rmk ≡ 0 (mod p). We hope to show in this work that this result is useful in the study of the first case of Fermat's last theorem.  相似文献   

2.
Let us denote by R(k, ? λ)[R(k, ? λ)] the maximal number M such that there exist M different permutations of the set {1,…, k} such that any two of them have at least λ (at most λ, respectively) common positions. We prove the inequalities R(k, ? λ) ? kR(k ? 1, ? λ ? 1), R(k, ? λ) ? R(k, ? λ ? 1) ? k!, R(k, ? λ) ? kR(k ? 1, ? λ ? 1). We show: R(k, ? k ? 2) = 2, R(k, ? 1) = (k ? 1)!, R(pm, ? 2) = (pm ? 2)!, R(pm + 1, ? 3) = (pm ? 2)!, R(k, ? k ? 3) = k!2, R(k, ? 0) = k, R(pm, ? 1) = pm(pm ? 1), R(pm + 1, ? 2) = (pm + 1)pm(pm ? 1). The exact value of R(k, ? λ) is determined whenever k ? k0(k ? λ); we conjecture that R(k, ? λ) = (k ? λ)! for k ? k0(λ). Bounds for the general case are given and are used to determine that the minimum of |R(k, ? λ) ? R(k, ? λ)| is attained for λ = (k2) + O(klog k).  相似文献   

3.
Let Z(Sn;?(x)) denote the polynomial obtained from the cycle index of the symmetric group Z(Sn) by replacing each variable si by f(x1). Let f(x) have a Taylor series with radius of convergence ? of the form f(x)=xk + ak+1xk+1 + ak+2xk+2+? with every a1?0. Finally, let 0<x<1 and let x??. We prove that
limn→∞Z(Sn;?(x))xkn = Πi=1k(1?xi)?ak+1
This limit is used to estimate the probability (for n and p both large) that a point chosen at random from a random p-point tree has degree n + 1. These limiting probabilities are independent of p and decrease geometrically in n, contrasting with the labeled limiting probabilities of 1n!e.In order to prove the main theorem, an appealing generalization of the principle of inclusion and exclusion is presented.  相似文献   

4.
Following a conjecture of P. Erdös, we show that if F is a family of k-subsets of and n-set no two of which intersect in exactly l elements then for k ? 2l + 2 and n sufficiently large |F| ? (k ? l ? 1n ? l ? 1) with equality holding if and only if F consists of all the k-sets containing a fixed (l + 1)-set. In general we show |F| ? dknmax;{;l,k ? l ? 1};, where dk is a constant depending only on k. These results are special cases of more general theorems (Theorem 2.1–2.3).  相似文献   

5.
Let k = Q(√u) (u ≠ 1 squarefree), K any possible cyclic quartic field containing k. A close relation is established between K and the genus group of k. In particular: (1) Each K can be written uniquely as K = Q(√vwη), where η is fixed in k and satisfies η ? 1, (η) = U2u, |U2| = |(√u)|, (v, u) = 1, vZ is squarefree, w|u, 0 < w < √u. Thus if ua2 + b2, there is no K ? k. If u = a2 + b2 then for each fixed v there are 2g ? 1K ? k, where g is the number of prime divisors of u. (2) Kk has a relative integral basis (RIB) (i.e., OK is free over Ok) iff N(ε0) = ?1 and w = 1, where ε0 is the fundamental unit of k, (or, equivalently, iff K = Q(√vε0u), (v, u) = 1). (3) A RIB is constructed explicitly whenever it exists. (4) disc(K) is given. In particular, the following results are special cases of (2): (i) Narkiewicz showed in 1974 that Kk has a RIB if u is a prime; (ii) Edgar and Peterson (J. Number Theory12 (1980), 77–83) showed that for u composite there is at least one K ? k having no RIB. Besides, it follows from (4) that the classification and integral basis of K given by Albert (Ann. of Math.31 (1930), 381–418) are wrong.  相似文献   

6.
Here quadratic and cubic σ-polynomials are characterized, or, equivalently, chromatic polynomials of the graphs of order p, whose chromatic number is p ? 2 or p ? 3, are characterized. Also Robert Korfhage's conjecture that if σ2 + + a is a σ-polynomial then a ≤ 12(b2 ? 5b + 12) is verified. In general, if σ(G) = Σ0naiσi is a σ-polynomial of a graph G, then an?2 is determined.  相似文献   

7.
Convergence of weighted sums of tight random elements {Vn} (in a separable Banach space) which have zero expected values and uniformly bounded rth moments (r > 1) is obtained. In particular, if {ank} is a Toeplitz sequence of real numbers, then | Σk=1ankf(Vk)| → 0 in probability for each continuous linear functional f if and only if 6Σk=1ankVk 6→ 0 in probability. When the random elements are independent and max1≤k≤n | ank | = O(n?8) for some 0 < 1s < r ? 1, then |Σk=1ankVk 6→ 0 with probability 1. These results yield laws of large numbers without assuming geometric conditions on the Banach space. Finally, these results can be extended to random elements in certain Fréchet spaces.  相似文献   

8.
Let p be an odd prime and suppose that for some a, b, c ? Z\pZ we have that ap + bp + cp = 0. In Part I a simple new expression and a simple proof of the congruences of Mirimanoff which appeared in his papers of 1910 and 1911 are given. As is known, these congruences have Wieferich and Mirimanoff criteria (2p ? 1 ≡ 1 mod p2 and 3p ? 1 ≡ 1 mod p2) as immediate consequences. Mirimanoff's congruences are expressed in the form of polynomial congruences Pm(?ab) ≡ 0 mod p, 1 ≤ mp ? 1, and these polynomials Pm(X) are characterized by means of simple relations. In Part II a complement to Kummer-Mirimanoff congruences is given under the hypothesis that p does not divide the second factor of the class number of the p-cyclotomic field.  相似文献   

9.
For any prime p, the sequence of Catalan numbers
an=1n2n?2n?1
is divided by the an prime to p into blocks Bk(k > 0) of an divisible by p. The lengths and positions of the Bk are determined. Additional results are obtained on prime power divisibility of Catalan numbers.  相似文献   

10.
The following estimate of the pth derivative of a probability density function is examined: Σk = 0Na?khk(x), where hk is the kth Hermite function and a?k = ((?1)pn)Σi = 1nhk(p)(Xi) is calculated from a sequence X1,…, Xn of independent random variables having the common unknown density. If the density has r derivatives the integrated square error converges to zero in the mean and almost completely as rapidly as O(n?α) and O(n?α log n), respectively, where α = 2(r ? p)(2r + 1). Rates for the uniform convergence both in the mean square and almost complete are also given. For any finite interval they are O(n?β) and O(n2log n), respectively, where β = (2(r ? p) ? 1)(2r + 1).  相似文献   

11.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

12.
Let a1 < a2 < … be a sequence of positive integers such that no ak is a sum of distinct other terms. Erdös conjectured that if a1n, then Σ1ak < log 2 + ?n, where, ?n → 0 as n → ∞. This result, which is the best possible, is established in this paper.  相似文献   

13.
It has been known for some time that the trapezoidal rule Tnf = 12f(0) + f(1) + … + f(n ? 1) + 12f(n) is the best quadrature formula in the sense of Sard for the space W1,p, all functions such that f?Lp. In other words, the norm of the error functional Ef = ∝0nf(x) dx ? ∑k = 0nλkf(k) in W1,p is uniquely minimized by the trapezoidal sum. This paper deals with quadrature formulas of the form ∑k = 0nl?Jcklf(l)(k) where J is some subset of {0, 1,…, m ? 1}. For certain index sets J we identify the best quadrature formula for the space Wm,p, all functions such that f(m)?Lp. As a result, we show that the Euler-Maclaurin quadrature formula
Tnf + o<2v≤mB2v(2v)! (f (2v?1)(0) ? f (2v?1) (n))
is the best quadrature formula of the above form with J = {0, 1, 3,…, ?m ? 1} for the space Wm,p, providing m is an odd integer.  相似文献   

14.
If lr(p) is the least positive integral value of x for which y2x(x + 1) ? (x + r ? 1)(modp) has a solution, we conjecture that lr(p) ≤ r2 ? r + 1 with equality for infinitely many primes p. A proof is sketched for r = 5. A further generalization to y2 ≡ (x + a1) ? (x + ar) is suggested, where the a's are fixed positive integers.  相似文献   

15.
A set {b1,b2,…,bi} ? {1,2,…,N} is said to be a difference intersector set if {a1,a2,…,as} ? {1,2,…,N}, j > ?N imply the solvability of the equation ax ? ay = b′; the notion of sum intersector set is defined similarly. The authors prove two general theorems saying that if a set {b1,b2,…,bi} is well distributed simultaneously among and within all residue classes of small moduli then it must be both difference and sum intersector set. They apply these theorems to investigate the solvability of the equations (ax ? ayp = + 1, (au ? avp) = ? 1, (ar + asp) = + 1, (at + azp) = ? 1 (where (ap) denotes the Legendre symbol) and to show that “almost all” sets form both difference and sum intersector sets.  相似文献   

16.
We show how inequalities of the type ∥F∥p ? C(p, q) a1 + (1p)? (1q) ∥ F ′ ∥q′ when F(0) = 0 can be used to find lower bounds of the first eigenvalue of the integral equation F(z) = λ0ak(s, z)F(s) ds.  相似文献   

17.
The following results are proved: Let A = (aij) be an n × n complex matrix, n ? 2, and let k be a fixed integer, 1 ? k ? n ? 1.(1) If there exists a monotonic G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1. (2) If A is irreducible and if there exists a G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1 if k ? 2, n ? 3; it is ? n ? 1 if k = 1.  相似文献   

18.
In two party elections with popular vote ratio pq, 12≤p=1 ?q, a theoretical model suggests replacing the so-called MacMahon cube law approximation (pq)3, for the ratio PQ of candidates elected, by the ratio ?k(p)?k(q) of the two half sums in the binomial expansion of (p+q)2k+1 for some k. This ratio is nearly (pq)3 when k = 6. The success probability gk(p)=(pa(pa+qa) for the power law (pq)a?PQ is shown to so closely approximate ?k(p)=Σ0k(r2k+1)p2k+1?rqr, if we choose a = ak=(2k+1)!4kk!k!, that 1≤?k(p)gk(p)≤1.01884086 for k≥1 if12≤p≤1. Computationally, we avoid large binomial coefficients in computing ?k(p) for k>22 by expressing 2?k(p)?1 as the sum (p?q) Σ0k(4pq)sas(2s+1), whose terms decrease by the factors (4pq)(1?12s). Setting K = 4k+3, we compute ak for the large k using a continued fraction πak2=K+12(2K+32(2K+52(2K+…))) derived from the ratio of π to the finite Wallis product approximation.  相似文献   

19.
In this paper, we consider the uniqueness of radial solutions of the nonlinear Dirichlet problem Δu + ?(u) = 0 in Ω with u = 0 on ?Ω, where Δ = ∑i = 1n?2?xi2,? satisfies some appropriate conditions and Ω is a bounded smooth domain in Rn which possesses radial symmetry. Our uniqueness results apply to, for instance, ?(u) = up, p > 1, or more generally λu + ∑i = 1kaiupi, λ ? 0, ai > 0 and pi > 1 with appropriate upper bounds, and Ω a ball or an annulus.  相似文献   

20.
Let θ(k, pn) be the least s such that the congruence x1k + ? + xsk ≡ 0 (mod pn) has a nontrivial solution. It is shown that if k is sufficiently large and divisible by p but not by p ? 1, then θ(k, pn) ≤ k12. We also obtain the average order of θ(k), the least s such that the above congruence has a nontrivial solution for every prime p and every positive integer n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号