首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The photoelectrochemical charging of Au-nanoparticles (NP) in a Au-nanoparticle/CdS-nanoparticle array assembled on a Au-coated glass surface is followed by means of surface plasmon resonance (SPR) spectroscopy upon continuous irradiation of the sample. The charging of the Au-NPs results in the enhanced coupling between the localized surface plasmon of the Au-NP and the surface plasmon of the bulk surface, leading to a shift in the plasmon angle. The charging effect of the Au-NPs is supported by concomitant electrochemical experiments in the dark. Analysis of the results indicates that ca. 4.2 electrons are associated with each Au-nanoparticle under steady-state irradiation. The photoelectrochemical charging effect of the Au-NPs in the Au-CdS NP array is employed to develop a SPR sensor for acetylcholine esterase inhibitors.  相似文献   

2.
Biomolecule-nanoparticle hybrid systems for bioelectronic applications   总被引:1,自引:0,他引:1  
Recent advances in nanobiotechnology involve the use of biomolecule-nanoparticle (NP) hybrid systems for bioelectronic applications. This is exemplified by the electrical contacting of redox enzymes by means of Au-NPs. The enzymes, glucose oxidase, GOx, and glucose dehydrogenase, GDH, are electrically contacted with the electrodes by the reconstitution of the corresponding apo-proteins on flavin adenine dinucleotide (FAD) or pyrroloquinoline quinone (PQQ)-functionalized Au-NPs (1.4 nm) associated with electrodes, respectively. Similarly, Au-NPs integrated into polyaniline in a micro-rod configuration associated with electrodes provides a high surface area matrix with superior charge transport properties for the effective electrical contacting of GOx with the electrode. A different application of biomolecule-Au-NP hybrids for bioelectronics involves the use of Au-NPs as carriers for a nucleic acid that is composed of hemin/G-quadruplex DNAzyme units and a detecting segment complementary to the analyte DNA. The functionalized Au-NPs are employed for the amplified DNA detection, and for the analysis of telomerase activity in cancer cells, using chemiluminescence as a readout signal. Biomolecule-semiconductor NP hybrid systems are used for the development of photoelectrochemical sensors and optoelectronic systems. A hybrid system consisting of acetylcholine esterase (AChE)/CdS-NPs is immobilized in a monolayer configuration on an electrode. The photocurrent generated by the system in the presence of thioacetylcholine as substrate provides a means to probe the AChE activity. The blocking of the photocurrent by 1,5-bis(4-allyldimethyl ammonium phenyl)pentane-3-one dibromide as nerve gas analog enables the photoelectrochemical analysis of AChE inhibitors. Also, the association CdS-NP/double-stranded DNA hybrid systems with a Au-electrode, and the intercalation of methylene blue into the double-stranded DNA, generates an organized nanostructure of switchable photoelectrochemical functions. Electrochemical reduction of the intercalator to the leuco form, -0.4 V vs. SCE, results in a cathodic photocurrent as a result of the transfer of photoexcited conduction-band electrons to O(2) and the transport of electrons to the valance-band holes by the reduced intercalator units. The oxidation of the intercalator, E 0 V (vs. SCE), yields in the presence of triethanolamine, TEOA, as sacrificial electron donor, an anodic photocurrent by the transport of conduction-band electrons, through intercalator units, to the electrodes, and filling the valance-band holes with electrons supplied by TEOA. The systems reveal potential-switchable directions of the photocurrents, and reveal logic gate functions.  相似文献   

3.
An electrically contacted glucose dehydrogenase (GDH) enzyme electrode is fabricated by the reconstitution of the apo-GDH on pyrroloquinoline quinone (PQQ)-functionalized Au nanoparticles (Au-NPs), 1.4 nm, associated with a Au electrode. The Au-NPs functionalized with a single amine group were attached to the Au surface by 1,4-benzenedithiol bridges, and PQQ was covalently linked to the Au-NPs. The apo-GDH was then reconstituted on the PQQ cofactor sites. The surface coverage of GDH corresponded to 1.4 x 10(-12) mol cm(-2). The reconstituted enzyme revealed direct electrical contact with the electrode surface, and the bioelectrocatalytic oxidation of glucose occurred with a turnover number of 11,800 s(-1). In contrast, a system that included the covalent attachment of GDH to the PQQ-Au-NPs monolayer in a random, nonaligned, configuration revealed lack of electrical communication between the enzyme and the electrode, albeit the enzyme existed in a bioactive structure. The bioelectrocatalytic function of the later system was, however, activated by the diffusional electron mediator 2,6-dichlorophenol-indophenol. The results imply that the alignment of GDH on a Au-NP through the reconstitution process leads to an electrically contacted enzyme-electrode, where the Au-NP acts as a charge-transfer mediator.  相似文献   

4.
A newly designed 1.5th generation poly(amido amine) dendrimer with an azacrown core, hexylene spacers, and octyl terminals was spread on gold nanoparticle (Au-NP) suspension. The surface pressure-area isothermal curves indicated that the molecular area of dendrimer on Au-NP suspension was significantly smaller than that on water, indicating the formation of dendrimer/Au-NP composites. The dendrimer Langmuir films on the Au-NP suspension were transferred to copper grids at various surface pressures and observed by transmission electron microscopy. The transferred films consisted of a fractal-like network of nanoparticles at low surface pressure and of a defect-rich monolayer of nanoparticles at high surface pressure. From these results, it was suggested that the dendrimers bind Au-NPs, and dendrimer/Au-NP composites formed networks or monolayers at the interface. From the intensity decrease of the Au plasmon band of Au-NP suspension after the formation of composite, it was estimated that some (approximately 14) dendrimer molecules bind to one Au-NP. Furthermore, neutron reflectivity at the air/suspension interface and X-ray reflectivity of the film transferred on a silicon substrate revealed that the dendrimer molecules are localized on the upper-half surface of Au-NP. Metal affinity of azacrown, flexibility of hexylene spacer, and amphiphilicity of dendrimer with octyl terminals played important roles for the formation of dendrimer/Au-NP hybrid films. The present investigation proposed a new method to fabricate the self-assembled functional polymer/nanoparticle hybrid film.  相似文献   

5.
A new concept for the amplified electrochemical detection of the 7229-base viral DNA of M13phi is developed. A thiolated 27-base nucleic acid (1) is assembled on an Au-electrode. Hybridization between the sensing interface and the M13phi DNA is followed by the polymerase-induced replication of the analyte DNA in the presence of dCTP, dGTP, dATP, and ferrocene-tethered-dUTP (2). The generated redox-active replica mediates electron transfer between the enzyme glucose oxidase (GOx) and the electrode and activates the bioelectrocatalyzed oxidation of glucose. The bioelectrocatalyzed oxidation of glucose provides a biocatalytic amplification path for the formation of the redox-active replica. The electrochemical techniques to follow the replication and the bioelectrocatalytic amplification are differential pulse voltammetry and cyclic voltammetry. The electrical responses from the system relate to the bulk concentration of the M13phi DNA, thus enabling the quantitative analysis of the viral gene.  相似文献   

6.
The electrochemistry of glucose oxidase (GOx) immobilized on a graphite rod electrode modified by gold nanoparticles (Au-NPs) was studied. Two types of amperometric glucose sensors based on GOx immobilized and Au-NPs modified working electrode (Au-NPs/GOx/graphite and GOx/Au-NPs/graphite) were designed and tested in the presence and the absence of N-methylphenazonium methyl sulphate in different buffers. Results were compared to those obtained with similar electrodes not containing Au-NPs (GOx/graphite). This study shows that the application of Au-NPs increases the rate of mediated electron transfer. Major analytical characteristics of the amperometric biosensor based on GOx and 13 nm diameter Au-NPs were determined. The analytical signal was linearly related to glucose concentration in the range from 0.1 to 10 mmol L?1. The detection limit for glucose was found within 0.1 mmol L?1 and 0.08 mmol L?1 and the relative standard deviation in the range of 0.1–100 mol L?1 was 0.04–0.39%. The τ1/2 of V max characterizes the storage stability of sensors: this parameter for the developed GOx/graphite electrode was 49.3 days and for GOx/Au-NPs/graphite electrode was 19.5 days. The sensor might be suitable for determination of glucose in beverages and/or in food.  相似文献   

7.
The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.

Biocatalytic control over the stiffness of pH-responsive hydrogels is applied to develop shape-memory, self-healing and controlled release matrices.  相似文献   

8.
A new synthesis of underivatized gold nanoparticles (Au-NPs) in water stabilized by the highly water soluble 28-membered macrocyclic polyammonium chloride, [28]ane-(NH(2)(+))(6)O(2)6Cl(-) (28-MCPAC) is reported. In addition to providing stability, 28-MCPAC with its cationic form functionalizes the Au-NPs for sensing anions in water. The 28-MCPAC-Au-NPs show a surface plasmon band in the visible region (>520 nm). By tuning the 28-MCPAC:HAuCl(4) ratio, Au-NPs with different core diameters ranging from 4 nm to 6 nm, as determined by TEM analysis, can be obtained. Particles are spherical, discrete, and appeared to have narrow size distributions. Raman spectroscopy confirms that the physisorption is responsible for the interaction between Au-NP surface and 28-MCPAC. The potential of the as-synthesized particles for sensing monophosphorylated nucleosides (nucleotides): 5-adenosine monophosphate (5-AMP), 5-cytosine monophosphate (5-CMP), 5-guanine monophosphate (5-GMP), and 5-uridine monophosphate (5-UMP) is investigated spectroscopically. Nucleotides-assisted agglomerations of 28-MCPAC-Au-NPs follow the order: 5-UMP>5-GMP>5-CMP>5-AMP. An attempt is taken to prepare Au-NPs in water at pH 4.55 without an added stabilizer. Particles without an added stabilizer are short lived, and the TEM image shows that the particles aggregate following a quasi-two-dimensional self-assembly array.  相似文献   

9.
We demonstrate how to tailor the spatial distribution of gold nanoparticles (Au-NPs) of different sizes within polystyrene (PS) thin, supported, film hosts, thereby enabling the connection between the spatial distribution of Au-NPs within the polymer film and the optical properties to be determined. The real, n, and imaginary parts, k, of the complex refractive indices N = n(λ)+ik(λ) of the nanocomposite films were measured as a function of wavelength, λ, using multivariable angle spectroscopic ellipsometry. The surface plasmon response of films containing nearly homogeneous Au-NP distributions were well described by predictions based on classical Mie theory and the Drude model. The optical spectra of samples containing inhomogeneous nanoparticle distributions manifest features associated with differences in the size and interparticle spacings as well as the proximity and organization of nanoparticles at the substrate and free surface.  相似文献   

10.
Gold nanoparticles (Au-NPs) were prepared by a surfactant-free single-phase reduction of hydrogen tetrachloroaurate(III) hydrate in the presence of different organic thiol ligands. Sizes, size distributions, and crystallinity of the Au-NPs were determined by high-resolution transmission electron microscopy and powder X-ray diffraction, whereas thermogravimetric analysis provided information on the organic ligand-to-gold ratios as well as amounts of contaminants. A systematic decrease in size with increasing conical bulk of the thiolate ligand is observed but large size distributions and contamination of the generated Au-NPs prohibit detailed mechanistic studies. A first-generation Fréchet dendron thiol produced the smallest and cleanest Au-NPs of the narrowest size distribution.  相似文献   

11.
Mimicking cellular transformations and signal transduction pathways by means of biocatalytic cascades proceeding in organized media is a scientific challenge. We describe two DNA machines that enable the “ON/OFF” switchable activation and deactivation of three‐component biocatalytic cascades. One system consists of a reconfigurable DNA tweezers‐type structure, whereas in the second system the catalytic cascade proceeds on a switchable DNA clamp scaffold. The three‐component catalytic cascades consist of β‐galactosidase (β‐Gal), glucose oxidase (GOx), and the K+‐ion‐stabilized hemin‐G‐quadruplex horseradish peroxidase (HRP)‐mimicking DNAzyme. The hemin‐G‐quadruplex‐bridged closed structure of the tweezers or clamp allows the biocatalytic cascades to operate (switched “ON′′), whereas separation of the hemin‐G‐quadruplex by means of 18‐crown‐6‐ether opens the tweezers/clamp structures, thus blocking the catalytic cascade (switched ”OFF“). This study is complemented by two‐component, switchable biocatalytic cascades composed of GOx and hemin‐G‐quadruplex assembled on hairpin‐bridged DNA tweezers or clamp nanostructures.  相似文献   

12.
We present results of a systematic examination of functionalized gold nanoparticles (Au-NPs) by electrospray-differential mobility analysis (ES-DMA). Commercially available, citrate-stabilized Au colloid solutions (10-60 nm) were sized using ES-DMA, from which changes in particle size of less than 0.3 nm were readily discerned. It was found that the formation of salt particles and the coating of Au-NPs by salt during the electrospray process can interfere with the mobility analysis, which required the development of sample preparation and data correction protocols to extract correct values for the Au-NP size. Formation of self-assembled monolayers (SAMs) of alkanethiol molecules on the Au-NP surface was detected from a change in particle mobility, which could be modeled to extract the surface packing density of SAMs. A gas-phase temperature-programmed desorption (TPD) kinetic study of SAMs on Au-NPs found the data to be consistent with a second-order Arrhenius-based rate law, yielding an Arrhenius factor of 1.0 x 10 (11) s (-1) and an activation energy approximately 105 kJ/mol. For the size range of SAM-modified Au-NP we considered, the effect of surface curvature on the energetics of binding of carboxylic acid terminated SAMs is evidently negligible, with binding energies determined by TPD agreeing with those reported for the same SAMs on planar surfaces. This study suggests that the ES-DMA can be added to the tool set of characterization methods used to study the structure and properties of coated nanoparticles.  相似文献   

13.
A one-pot synthesis of thermally stable core/shell gold nanoparticles (Au-NPs) was developed via surface-initiated atom transfer radical polymerization (ATRP) of n-butyl acrylate (BA) and a dimethacrylate-based cross-linker. The higher reactivity of the cross-linker enabled the formation of a thin cross-linked polymer shell around the surface of the Au-NP before the growth of linear polymer chains from the shell. The cross-linked polymer shell served as a robust protective layer, prevented the dissociation of linear polymer brushes from the surfaces of Au-NPs, and provided the Au-NPs excellent thermal stability at elevated temperature (e.g., 110 degrees C for 24 h). This synthetic method could be easily expanded for preparation of other types of inorganic/polymer nanocomposites with significantly improved stability.  相似文献   

14.
Su L  Mao L 《Talanta》2006,70(1):68-74
This paper describes novel electrochemical properties of gold nanoparticles/alkanedithiol conductive films and their electroanalytical applications for voltammetric determination of trace amount of one kind of environmental pollutants, catechol. The conductive films are prepared by closely packing 12-nm diameter gold nanoparticles (Au-NPs) onto Au electrodes modified with the self-assembled monolayers (SAMs) of alkanedithiols (i.e., HS(CH2)nSH, n = 3, 6, 9). The assembly of the Au-NPs onto the SAM-modified electrodes essentially restores the heterogeneous electron transfer between Au substrate and redox species in solution phase that is almost totally blocked by the SAMs and, as a result, the prepared Au-NP/SAM-modified electrodes possess a good electrode reactivity without a remarkable barrier toward the heterogeneous electron transfer. Moreover, the prepared Au-NP/SAM-modified electrodes are found to exhibit a largely reduced interfacial capacitance, compared with bare Au electrode. These electrochemical properties of the Au-NP/SAM-modified electrodes essentially make them very useful for electroanalytical applications, which is illustrated by voltammetric determination of trace amount detection of environmental pollutant, catechol.  相似文献   

15.
In this study, improved detection of bovine serum albumin (BSA) was achieved by use of a fabricated surface plasmon resonance (SPR) biosensor. Terphenyldithiol (TPDT) was self-assembled on a gold substrate, then gold nanoparticles (Au-NPs) were chemisorbed on to the TPDT monolayer by strong bonding with the terminal thiol groups of the TPDT. The new sensor obtained was tested for immobilization of protein. The SPR results revealed much better detection of BSA by Au-NPs chemisorbed on the TPDT self-assembled monolayer (SAM) than by the bare SAM on the gold substrate.  相似文献   

16.
Conductive cellulose-multiwalled carbon nanotube (MWCNT) matrix with a porous structure and good biocompatibility has been prepared using a room temperature ionic liquid (1-ethyl-3-methylimidazolium acetate) as solvent. Glucose oxidase (GOx) was encapsulated in this matrix and thereby immobilized on a glassy carbon surface. The direct electron transfer and electrocatalysis of the encapsulated GOx has been investigated using cyclic voltammetry and chronoamperometry. The GOx exhibited a pair of stable, well defined and nearly symmetric reversible redox peaks. The experimental results also demonstrate that the immobilized GOx retains its biocatalytic activity toward the oxidation of glucose and therefore can be employed in a glucose biosensor. The results show that the bioelectrode modified by the cellulose-MWCNT matrix has potential for use in biosensors and other bioelectronics devices.  相似文献   

17.
Binding of gold nanoparticles (Au-NP) at amine-functionalised multi-walled carbon nanotubes (MWNTs) is proposed. The MWNTs are functionalised with acylchloride groups, which further react with ethylenediamine to form amine-functionalised MWCNTs. These amines are able to bind preformed colloidal Au-NPs. The Au/MWNT composite material facilitates electron-transfer reactions with free-diffusing redox compounds.  相似文献   

18.
The present paper investigates the selective incorporation of preformed nanoparticles (hydrophobic Au-NP (2 nm); hydrophilic Au-NP (12 nm); hydrophobic CdSe-NP (1.9 nm); retrovirus-particles (approximately 30 nm)) into the interface of lipid vesicles and polymersomes via TEM and DLS investigations. Lipid membranes were made from N,N-dimethyl-N,N-dioctadecylammonium bromide (DODAB), di-oleoyl-phosphatidylcholine (DOPC), whereas polymersome-membranes were fabricated from the diblock copolymer poly-(butadiene-block-ethylenoxide). Stabilization of the final structures was achieved via sol/gel processes at the outside of the membranes, thus stabilizing the structure by a silicate shell. Whereas hydrophobic Au-NPs can be successfully embedded into the polymersome- and lipid-vesicle membranes, hydrophilic nanoparticles were found evenly distributed in the inner- and outer compartments of the vesicles and polymersomes. Significant effects such as size reduction, selective enrichment of all nanoparticles within only few polymersomes as well as budding effects of larger entities (i.e., viral particles) are described.  相似文献   

19.
An optical glucose biosensor was fabricated by entrapping glucose oxidase (GOx) within the xerogel that was derived from tetraethylorthosilicate and hybridised with hydroxyethyl carboxymethyl cellulose polymer. The entrapped-GOx was mainly characterised with its long-lasting apparent biocatalytic activity as compared to that being entrapped in only sol-gel matrix. The biocatalytic activity of the entrapped-enzyme has extended its shelf lifetime up to 3 years. This long-term stability was closely correlated with the reduction in the shrinkage process of the hybrid gel being used. In conjunction with an optical oxygen transducer, the entrapped-GOx was assembled as an optical glucose biosensor comprised a sample flow system with which the dissolved oxygen in the sample could be precisely controlled and varied. The analytical working range was tuneable within 9.0 μM-100 mM range depending on the dissolved oxygen concentration in the test solution. The time taken to reach a 95% steady signal was 6-9 min at flow rate of 1.0 mL min−1. The glucose biosensor has been satisfactorily applied to the determination of glucose contents of urine samples.  相似文献   

20.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号