首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
CaCO3 crystallization on a chitosan membrane was studied using diffusion of (NH4)2CO3 vapors into a CaCl2 solution containing differing added amounts of two polyacrylic acids (PAAs) with molecular weights of ca. 2.0 x 10(3) and ca. 4.5 x 10(4). The coexistence of PAA and the chitosan membranes produced thin CaCO3 island crystals, which developed into a continuous CaCO3 film on the membranes. Continuous CaCO3 films consisting of only aragonite formed on the chitosan membranes at the optimum amount of PAA. When the amount of PAA is not optimum, the polymorph of CaCO3 switches from aragonite to vaterite, and the morphology has a tendency to become an isolated island structure. The formation of the aragonite and vaterite island crystals and the appearance of a range of added PAA suitable for their formation are explained by the action of two parallel phenomena: (a) the high concentration of Ca2+ ions in the chitosan membrane vicinity is achieved by the interaction between the -COO- groups of PAA adsorbed by the -NH3+ groups of the chitosan membrane through an electrostatic force and free Ca2+ ions in the CaCl2 solution, which produces the high supersaturation with CaCO3 in the membrane vicinity during CO2 diffusion; (b) PAA, remaining as mobile carboxylic anions in the CaCO3 solution, inhibits the growth of the CaCO3 island crystals by its adsorption. The CaCO3 supersaturation in the membrane vicinity is controlled by regulating the balance of these phenomena, which leads to the formation of the desired CaCO3 polymorph.  相似文献   

2.
壳多糖与丙烯酸丁酯的乳液接枝共聚研究   总被引:10,自引:0,他引:10  
以十二烷基苯磺酸钠为乳化剂,过硫酸钾-亚硫酸氢钠为引发剂,研究了壳多糖与丙烯酸丁醋的乳液共聚合,结果表明当[K2S2O8]=[NaHSO3]=2.57×10-3mol·1-1,[BA]=0.68mol.1-1,[Chitosan]=19.2g·l-1,在70℃下反应5小时,共聚反应的接技率和接枝效率均较高.用红外光谱,差热分析,X射线衍射,扫描电镜对接技共聚物进行了表征,此外测试了共聚物胶乳成膜的机械性能,表明用丙烯酸丁酯对壳多糖进行接枝改性,可提高壳多糖的韧性,扩大其应用范围.  相似文献   

3.
Waste rubber powder was grafted with different vinyl monomers by using gamma-radiation. The monomers used for grafting were acrylic acid, acrylamide and acrylonitrile. The sodium salt of grafted polyacrylic acid as well as the amidoxime derivative of grafted polycacrylonitrile were also obtained. Evaluation of the efficiency of the products obtained to the recovery of some metal ions such as cobalt and nickel as well as to phenol was carried out. It was found that the grafted waste rubber powder is able to recover cobalt and nickel ions from their corresponding salts depending on the type of monomers used. It was also found that phenol can be reasonably recovered by using rubber powder grafted with acrylamide and amidoxime derivative.  相似文献   

4.
ABSTRACT

Spontaneous removal of monocarboxylic (formic, acetic, propionic or butyric) acids accompanying dehydration of the corresponding chitosan salts was observed from X-ray fiber diffraction diagrams obtained during the storage of these salts for a given period of time. The first three salts were prepared by immersing a tendon chitosan (a hydrated crystal) in an aqueous solution of respective monocarboxylic acid and 2-propanol. The salts showed similar fiber patterns not only to one another but also to the “Eight-fold” polymorph of the original chitosan, indicating that they are Type II salts, hydrated crystals, where the backbone chitosan molecule takes up an eight-fold helical conformation. The temperature required for the salt formation depended on the hydrophobicity of the acid, e.g., the chitosan formic acid salt could be prepared at room temperature, whereas, formation of the propionic acid salt was carried out at 4 °C. All the acids spontaneously evaporated accompanied by dehydration during storage of the salts, resulting in formation of anhydrous crystalline chitosan. Removal of the monocarboxylic acids was accelerated by increasing the hydrophobicity of the acid: at 100% relative humidity approximately 3 months for the formic, 1 month for the acetic and 3 weeks for the propionic acid salts. In the case of butyric acid the anhydrous polymorph of chitosan was obtained immediately after the reaction, suggesting that the water removing action of this acid was too fast to detect a Type II salt by the present X-ray method. The anhydrous crystals of chitosan were irreversibly prepared by annealing a hydrated crystal in water at a high temperature, such as 240 °C, leading to a little loss of orientation and to thermal decomposition of the sample specimen to some extent. But it was found that, through Type II salts of monocarboxylic acids, the hydrated crystals of chitosan can be dehydrated even at room temperature without any loss of orientation and decomposition of the chitosan specimen.  相似文献   

5.
Abstract

(Dimethylamino)ethyl methacrylate (DMAEMA) was grafted onto chitosan using ceric ammonium nitrate as initiator in acetic acid solution. The effects of reaction variables on the grafting percentage and efficiency percentage were investigated, including the amounts of monomer and initiator, reaction time and reaction temperature. The grafted copolymers were confirmed by FTIR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of TGA and DSC indicated the improvement of thermal stability for chitosan‐g‐poly(PDMAEMA). Solubility test revealed the improved hydrophilicity of grafted chitosan in aqueous acetic acid solution, and its swelled behavior in mixtures of glacial acetic acid and anhydrous ethanol (the ratios of 1:1 and 1:2, v/v). The grafted copolymer possessed amphiphilic structure and exhibited properties of polymeric surfactant.  相似文献   

6.
Poly(methyl methacrylate) has been grafted onto chitosan by using Fenton's reagent as a redox initiator in an aqueous medium. Initiation by Fenton's reagent was carried out in the presence of atmospheric oxygen. The percentages of grafting, efficiency, and homopolymer were found to depend on chitosan (RchitOH), ferrous ammonium sulfate (FAS), hydrogen peroxide, monomer (MMA) concentrations, reaction temperature, and reaction time.  相似文献   

7.
Abstract

The feasibility of grafting poly(methyl acrylate) and poly[1-(methoxycarbonyl) ethylene] onto chitosan, poly-β(1←-4)-2-amino-2-deoxy-d-glucose, was investigated. The grafting reaction was carried out in aqueous solution by using ferrous ammonium sulfate (FAS) in combination with H2O2 as redox initiator. The effects of such reaction variables as chitosan, monomer and initiator concentrations, reaction time, and reaction temperature were determined. Through this study the grafting reaction could be optimized. The grafting yield reached its maximum value of 332% when 0.3 g chitosan was copolymerized with 3 mL monomer at 70°C for 120 minutes with [FAS] = 6 × 10?5 M, [H2O2] = 6 × 10?3 M, and 8 mL water. The grafted chitosan was found to be insoluble in solvents for chitosan and solvents for poly(methyl acrylate), but did show swelling in dilute acetic acid, methanol, acetone, and in an ethanol/2% acetic acid 1:1 mixture. The thermal stability of chitosan and grafted chitosan were studied by dynamic thermogravimetric analysis. The results show that the graft copolymer is thermally more stable than pure chitosan. The overall activation energy for graft copolymerization was estimated to be 32.8 kcal/mol.  相似文献   

8.
The flocculation properties of chitosan (cationic component) and its copolymers with (meth)acrylic acid were studied. The flocculation power of grafted chitosan copolymers with dimethylaminoethyl methacrylate in mixtures with an anionic polyacrylic flocculant was evaluated.  相似文献   

9.
Abstract

In the homopolymerization and copolymerization of vinyl acetate with dibutyl maleate in the presence of the sodium salt of sulfosuccinic acid semiester with nonylphenol ethoxylated with 25 mol ethylene oxide, the initiator, potassium persulfate (KPS), has a higher decomposition rate than in water even after consumption of monomer. The value of the initiator productivity, P, defined as the ratio of the formed polymer over the decomposed KPS, decreases as the batch stage of the semicontinuous process proceeds. The initiator reacts either with free surfactant molecules or with those grafted on poly(vinyl acetate) chains. During the stage of continuous addition of monomers and KPS, a smaller initiator concentration no longer provides proportionality between the added and decomposed amounts of initiator. The increased monomer concentration at the beginning of continuous addition causes the rate of KPS splitting to decrease as most of the surfactant is bound to the surface monomer/polymer particles.  相似文献   

10.
The effects of seven carboxylic acids, i.e., acrylic acid, maleic acid, tartaric acid, malic acid, succinic acid, and citric acid, on CaCO(3) crystallization were studied using the unseeded pH-drift method along with a light-scattering technique. Experiments were started by mixing solutions of CaCl(2) and NaHCO(3) in the presence or absence of additives. The crystallization was studied by recording the decrease in pH resulting from the reaction Ca(2+)+HCO(3)(-)-->CaCO(3)+H(+). A given amount of carboxylic acid was added to the solution of CaCl(2) or NaHCO(3) before mixing the reactants. The pH profiles obtained in the case of the CaCl(2) solution containing an additive were similar to those for the NaHCO(3) solution containing one, and when an additive was added after the onset of crystallization, the growth of CaCO(3) immediately stopped. The light-scattering observations, in all cases, indicated that CaCO(3) nucleation occurred at 10-20 s after mixing of the reactants. The results indicated that the nucleation of CaCO(3) was not influenced by the presence of carboxylic acids, but CaCO(3) crystal growth was reduced by their adsorption to the surface of the CaCO(3) crystals. These phenomena were explained by assuming a stronger affinity of the carboxylic acids for CaCO(3) particles than for the free Ca(2+) ions in solution. The crystallization of CaCO(3) in the presence of additives was divided into three stages: nucleation, growth incubation, and growth periods. Copyright 2001 Academic Press.  相似文献   

11.
In this paper the mineralization of CaCO(3) in various hydrogel matrices is presented. Sulfonic acid based hydrogels were prepared by introduction of sulfonate-containing monomers into a polyacrylamide network. The sulfonate content of polyacrylamide-co-vinylsulfonate and polyacrylamide-co-allylsulfonate decreases during elution of the copolymers in demineralized water, indicating insufficient linking of the sulfonate-bearing monomers within the hydrogel. In contrast to this, acrylamidomethylpropanesulfonate (AMPS) effectively copolymerizes with acrylamide (AAm) monomers. To study the influence of spatial arrangement of ionic functional groups within hydrogel networks on the mineralization of CaCO(3), AMPS copolymers with different degrees of AMPS cross-linking were synthesized. For the mineralization experiments the copolymers were placed into a double-diffusion arrangement. Calcite as the thermodynamically stable modification of CaCO(3) was obtained with a particular morphology. The pseudocubic habitus resembles aggregates obtained by mineralization in pure polyacrylamide. However, closer examination of the aggregates by scanning electron microscopy (SEM) shows that the crystal growth in the AMPS copolymers is different from that observed in polyacrylamide. Whereas the morphology of the calcite aggregates could be fine-tuned by using copolymers with different sulfonate content, the spatial distribution of the ionic functional groups alters the course of crystallization. Calcium ions are locally accumulated due to the heterogeneous distribution of functional sulfonate groups within the copolymer network. Thereby the nucleation of calcite is triggered, resulting in enhanced mineralization.  相似文献   

12.
In this paper, a systematic study of the influence of various experimental parameters on the morphology and size of CaCO3 crystals after room-temperature crystallization from water in the presence of poly(ethylene glycol)-block-poly(methacrylic acid) (PEG-b-PMAA) is presented. The pH of the solution, the block copolymer concentration, and the ratio [polymer]/[CaCO3] turned out to be important parameters for the morphogenesis of CaCO3, whereas a moderate increase of the ionic strength (0.016 M) had no influence. Depending on the experimental conditions, the crystal morphologies can be tuned from calcite rhombohedra via rods, ellipsoids or dumbbells to spheres. A morphology map is presented which allows the prediction of the crystal morphology from a combination of pH, and CaCO3 and polymer concentration. Morphologies reported in literature for the same system but under different crystallization conditions agree well with the predictions from the morphology map. A closer examination of the growth of polycrystalline macroscopic CaCO3 spheres by TEM and time-resolved dynamic light scattering showed that CaCO3 macrocrystals are formed from strings of aggregated amorphous nanoparticles and then recrystallize as dumbbell-shaped or spherical calcite macrocrystal.  相似文献   

13.
Results are reviewed from a study examining how structural modifications introduced by ozonization enhance the influence of kraft lignin on the crystallization of CaCO(3). Ozone treatment of kraft lignin in an aqueous environment is shown to increase its carboxylic acid and overall oxygen content and reduce its molecular weight. Calcium concentration and temperature were monitored in heated supersaturated solutions containing ozonized kraft lignins to gauge their influence on CaCO(3) crystallization processes. The presence of kraft lignin raises the temperature necessary to induce crystallization. This effect is shown to level off at relatively low lignin concentrations and be dependent on the extent of ozone treatment the kraft lignin has undergone. A linear correlation is found between crystallization temperatures and the carboxylic acid content of ozonized lignin samples indicating the introduction of these functional groups plays an important role in enhancing its inhibitory effect. Scanning electron microscopy images of crystals grown in the presence of kraft lignins show significant morphological modifications. These are consistent with specific or pseudo specific interactions between the lignin and crystal faces of calcite to inhibit growth parallel to its c axis. The influence over crystal morphology demonstrated by modified kraft lignin increases with increasing ozonization. Also presented here are crystallization temperature data for a range of kraft lignin ultrafiltration fractions, which indicate that the optimal (nominal) molecular weight of kraft lignin for inhibiting the crystallization of CaCO(3) lies between 5000 and 10000.  相似文献   

14.
以半干法制备了一系列壳聚糖不饱和羧酸盐--壳聚糖水杨酸盐(a1)、壳聚糖苯甲酸盐(a2)、壳聚糖肉桂酸盐(a3)壳聚糖丙烯酸盐(a4)和壳聚糖衣康酸盐(a5).用红外光谱和紫外光谱表征了该产品的结构,以凯氏定氮法测定了羧酸的结合量.结果表明壳聚糖和不饱和羧酸盐是通过壳聚糖上的氨基和羧酸中的羧基发生了成盐反应,羧酸的结合...  相似文献   

15.
Superabsorbent polymers (SAPs) and composites (SAPCs) were prepared entirely by graft copolymerization of polyacrylamide (PAM) onto hydroxyethyl cellulose (HEC), using potassium persulfate (KPS) as an initiator, and N,N′-methylenebisacrylamide (MBA) as a crosslinker, in an aqueous solution. The extent of grafting was evaluated from % grafting efficiency (%GE) for various HEC/AM ratios, and a near optimal ratio was determined. Influences of various preparation parameters, i.e., the ratio of HEC/AM, amount of initiator and crosslinker, reaction temperature and time, and amount of filler on water swelling capacity of SAPs and SAPCs were studied. An FT-IR determination confirmed that the PAM was successfully grafted onto the HEC backbone, by showing absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. The swelling capacity of SAPs and SAPCs depended strongly on different parameters, and the maximum swelling capacity was over 426 g/g and 538 g/g for the SAPs and SAPCs, respectively.  相似文献   

16.
合成了温敏性的聚(N-异丙基丙烯酰胺)-b-聚(L-谷氨酸)(PNIPAM-b-PLGA)嵌段共聚物,在较高温度下制备了以PNIPAM为核、以PLGA为壳的自组装胶束,研究了胶束对碳酸钙晶体生长的控制作用.使用扫描电镜和X射线衍射表征了碳酸钙晶体的形貌和晶型.当聚合物胶束浓度较高时,得到纤维状的文石;当胶束浓度较低时,...  相似文献   

17.
Grafting of N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA) onto chitosan using ceric ammonium nitrate as an initiator was studied under nitrogen atmosphere in 2% wt. acetic acid solution. The grafted polymer was confirmed by FT-IR spectroscopy. The extent of grafting could be adjusted by controlling the appropriate reaction conditions. The maximum percentage of grafting about 50% was obtained under optimum condition. A representative grafted copolymer was characterized by thermogravimetric analysis and chitosan was used as reference.  相似文献   

18.
The interpolyelectrolyte complex formation between chitosan and anionic polyacrylic derivatives, bearing sulfonic moieties, as well as the protein adsorption onto the chitosan/polyacrylic complexes were studied by surface plasmon resonance (SPR) optical biosensor. This unique technique allows a real time monitoring of different surface molecular interactions with very high sensitivity. The acrylic macromolecules are two families of copolymers of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and, respectively, 2-hydroxyethylmethacrylate (HEMA) and N,N'-dimethylacrylamide (DMAA). The complexation process was evaluated through the SPR measurements resulting from the flowing of polyacrylic aqueous solution over the sensor previously coated with chitosan. The SPR was able to differentiate strong ionic bonds from other weak and reversible interactions. By means of the coated sensors (uncomplexed and the whole series of complexed chitosan), SPR cold be used for a simple "in vitro" protein adsorption analysis, by flowing aqueous solutions of albumin and fibrinogen. While both proteins were adsorbed on the uncomplexed chitosan, the complexed coatings exhibited different and very promising behaviors. In particular, they showed no adsorption or only selective adsorption of albumin.  相似文献   

19.
Acrylamide grafted cationic guar gum (CGG-g-PAM), induced by ceric ammonium sulfate, was synthesized using aqueous polymerization technique at 10 °C and the flocculation property was studied with high-turbidity tobacco wastewater (NTU > 4500). Thus five grades of graft copolymers were obtained through alteration of initiator and monomer concentrations in order to understand the effect of molecular weight on flocculation. The grafted copolymer was characterized by FTIR and SEM. Study of DTG demonstrated that CGG-g-PAM had better heat-resistant performance than guar gum, cationic guar gum (CGG) and polyacrylamide. The dosage of polyaluminium chloride (PAC) and CGG-g-PAM, pH value and molecular weight were considered to be the factors that can influence flocculation efficiency. The result showed best flocculation efficiency occurs at pH 5 when the dosage of CGG-g-PAM and PAC are 3.6 ppm and 120 ppm, respectively. The percentage of turbidity and COD removal are 98% and 24% correspondingly, and its flocculating efficiency prevails over that of CGG and cationic polyacrylamide (CPAM).  相似文献   

20.
Conducting polymers are interesting materials of technological applications, while the use of polymers as additives controlling crystal nucleation and growth is a fast growing research field. In the present article, we make a first step in combining both topics and report the effect of conducting polymer derivatives, which are based on carboxylated polyanilines (c-PANIs), on in vitro CaCO3 crystallization by the Kitano and gas diffusion method. This is the first example of the mineralization control of CaCO3 by a rigid carboxylated polymer. Both the concentration of c-PANI and the presence of carboxylate groups have a strong influence on the CaCO3 crystallization behavior and crystal morphology. X-ray diffraction (XRD) analysis shows crystalline calcite particles confirmed by FTIR spectra. pH and Ca2+ measurements during CaCO3 crystallization utilizing the Kitano and a constant-pH approach show a defined nucleation period of CaCO3 particles. The measurements allow for the calculation of the supersaturation time development, and the kinetic data can be combined with time-dependent light microscopy. The presence of c-PANIs delays the time of nucleation indicative of calcite nucleation inhibition. Microscopy illustrates the morphologies of CaCO3 crystals at all crystallization stages, from homogeneous spherical amorphous CaCO3 (ACC) particles corresponding to the first steps of crystallization to transition stage calcite crystals also involving a dissolution-recrystallization process in a late stage of crystallization. The data show that it is not possible to conclude the crystallization mechanism even for a very simple additive controlled crystallization process without time-resolved microscopic data supplemented by the analysis of the species present in the solution. Finally, fluorescence analysis indicates that conducting polymer derivatives can be incorporated into precipitated calcite particles. This gives rise to CaCO3 particles with novel and interesting optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号